
Journal of Computational and Applied Mathematics () –

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Solving secular and polynomial equations: A multiprecision
algorithm
Dario A. Bini a,∗, Leonardo Robol b
a Dipartimento di Matematica, Università di Pisa, Italy
b Scuola Normale Superiore, Pisa, Italy

a r t i c l e i n f o

Article history:
Received 21 December 2012
Received in revised form 20 March 2013

Dedicated to Prof. Dario A. Bini’s mother

Keywords:
Secular equations
Polynomial roots
Multiprecision computations
Ehrlich–Aberth iteration
Root neighborhoods

a b s t r a c t

We present an algorithm for the solution of polynomial equations and secular equations of
the form S(x) = 0 for S(x) =

n
i=1

ai
x−bi

−1 = 0,whichprovides guaranteed approximation
of the roots with any desired number of digits. It relies on the combination of two
different strategies for dealing with the precision of the floating point computation: the
strategy used in the package MPSolve of D. Bini and G. Fiorentino [D.A. Bini, G. Fiorentino,
Design, analysis and implementation of a multi-precision polynomial rootfinder, Numer.
Algorithms 23 (2000) 127–173] and the strategy used in the package Eigensolve of
S. Fortune [S. Fortune, An iterated eigenvalue algorithm for approximating the roots of
univariate polynomials, J. Symbolic Comput. 33 (5) (2002) 627–646]. The algorithm is
based on the Ehrlich–Aberth (EA) iteration, and on several results introduced in the
paper. In particular, we extend the concept and the properties of root-neighborhoods
from polynomials to secular functions, provide perturbation results of the roots, obtain
an effective stop condition for the EA iteration and guaranteed a posteriori error bounds.
We provide an implementation, released in the package MPSolve 3.0, based on the GMP
library. From the many numerical experiments it turns out that our code is generally
much faster than MPSolve 2.0 and of the package Eigensolve. For certain polynomials, like
the Mandelbrot or the partition polynomials the acceleration is dramatic. The algorithm
exploits the parallel architecture of the computing platform.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Given a positive integer n and complex numbers ai, bi, i = 1, . . . , n such that bi ≠ bj for i ≠ j and ai ≠ 0 for i = 1, . . . , n,
consider the rational function

S(x) =

n
i=1

ai
x − bi

− 1. (1)

We associate with S(x) the secular equation S(x) = 0. The numbers bi and ai, for i = 1, . . . , n are referred to as the nodes
and the coefficients of the secular function S(x), respectively.

Equations of this kind are mainly encountered in the case of real nodes bi and positive coefficients ai when the roots are
real. Typical examples are modifying symmetric eigenvalue problems [1], or solving the tridiagonal symmetric eigenvalue
problem by means of divide and conquer techniques [2,3], updating the singular values of a matrix, solving least squares

∗ Corresponding author. Tel.: +39 0502213279.
E-mail addresses: bini@dm.unipi.it, dario.a.bini@gmail.com (D.A. Bini), leonardo.robol@sns.it (L. Robol).

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.04.037

http://dx.doi.org/10.1016/j.cam.2013.04.037
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:bini@dm.unipi.it
mailto:dario.a.bini@gmail.com
mailto:leonardo.robol@sns.it
http://dx.doi.org/10.1016/j.cam.2013.04.037

2 D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () –

problems [4], invariant subspace computation [5] and more. Over the complex field, for any set of nodes and coefficients,
secular equations are encountered in the solution of the eigenvalue problem for a diagonal plus rank-one matrix [6–9] and
in representing generalized companion matrix pencils in the Lagrange basis especially in the framework of ‘‘polynomial
algebra by values’’ [10].

Secular equations are also a powerful tool for attacking the polynomial root-finding problem. This is the main fact that
motivates our interest in such equations. In fact, the monic polynomial of degree n

p(x) = Π(x)S(x), Π(x) = −

n
i=1

(x − bi)

has roots that coincide with the roots of S(x). Moreover, one can verify that

ai =
p(bi)

n
j=1, j≠i

(x − bj)
(2)

so that, given the polynomial p(x) and the nodes bi it is not expensive to compute the coefficients ai and to reformulate the
polynomial root-finding problem in terms of a secular equation.

In this paper we present a method for the numerical solution of secular equations together with its computational
analysis. More precisely we describe, analyze and implement an algorithm which, given in input the coefficients ai and the
nodes bi, i = 1, . . . , n of the secular function S(x) togetherwith an integer d, provides in output the roots of S(x) represented
with d guaranteed digits. In its cheaper version (isolation), the algorithm can provide approximations to the roots with the
minimum number of digits sufficient to separate them from each other. The maximum number d of digits is used only for
those roots, if any, which cannot be otherwise separated.

The algorithm can be effectively used as a tool for computing an arbitrarily large number d of digits of the roots of a
polynomial p(x) assigned either in terms of its coefficients in some polynomial basis or bymeans of a black boxwhich, given
in input a complex number x, provides in output the complex number p(x). In factwewill show that using the representation
of a polynomial in terms of secular equation provides substantial computational advantages.

The method relies on the combination of two different strategies to reduce the required precision of the floating
point arithmetic: the strategy adopted in the package of MPSolve of D. Bini and G. Fiorentino [11], and that used in the
package Eigensolve of S. Fortune [12]. It exploits some theoretical results, that we present in this paper, concerning root-
neighborhoods, numerical conditioning, a posteriori error bounds, and rounding error analysis, related to computations
with secular functions. It relies also on the formulation of the problem given in terms of structured matrices and on the
Ehrlich–Aberth iteration as main approximation engine [13,14].

The algorithm that we have obtained has been implemented in the language C and incorporated in the package MPSolve
originating the release MPSolve 3.0. The software is free and can be downloaded from http://riccati.dm.unipi.it/mpsolve. It
enables to deal with secular and polynomial equationswhere the real or complex input data can take either the approximate
form of floating point numbers or the exact form of integers and rationals. The implementation exploits the parallel
architecture of the computing platform.

From themany numerical experiments thatwe have performed our code, even though appliedwithout the parallelism, is
generally faster than MPSolve and Eigensolve. For certain polynomials it is dramatically faster. The speed up that it reaches
when using multicore hardware is close to optimal. Just to make an example, for the partition polynomial of degree 72.000
which has integer coefficients representable with several megabytes, MPSolve 2.0 took about 30 days to compute all the
roots [15]. Our code computes the roots in less than 2 h whereas Eigensolve has an estimated CPU time of many years.

The paper is organized as follows. In Section 2we recall the strategies ofMPSolve and Eigensolve, and give an overview of
our algorithm. In Section 3we develop the numerical tools that we need. In particular we provide a backward stablemethod
for computing S(x), and we extend the definition and the properties of root-neighborhoods [16,17] from polynomials to
secular functions. These properties allow us to devise effective stop conditions to halt the Ehrlich–Aberth iteration. Section 4
deals with thematrix representation of the problem andwith the way of constructing different secular functions having the
same roots as S(x) and using different sets of nodes. We refer to these functions as equivalent functions. Gerschgorin-like
inclusion results are given and used for devising a posteriori error bounds. In Section 5 we perform a perturbation analysis
of the roots of secular functions where we show that the condition number of the roots converges to zero as the nodes, used
for representing the equivalent secular function, converge to the roots. The Ehrlich–Aberth iteration is recalled in Section 6.
Finally, in Section 7 we present the results of the numerical experiments.

2. Overview of the algorithm

Our algorithm performs computations in floating point arithmetic with a variable number of digits. Since high precision
arithmetic is expensive, our goal is to keep the number of digits of the floating point computation as low as possible.Wewill
refer to theworking precision as to the number w of binary digits used in the current floating point computation and denote
u = 2−w the correspondingmachine precision. Recall that the standard IEEE double precision arithmetic has w = 53 bits.

http://riccati.dm.unipi.it/mpsolve

D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () – 3

Here we provide an overview of our algorithm. First, we recall two different strategies to manage the working precision
for computing roots of polynomials: the strategy of MPSolve and the one of Eigensolve. Then we describe the new approach
which combines the two different techniques. To better explain this, we need to anticipate the following tools and concepts
which will be better clarified and investigated in the next sections.

Set of inclusion disks is a set of disks in the complex plane, say provided by the Gerschgorin theorem, such that their union
contains all the roots, and any connected component formed by k disks contains k roots. This way, isolated disks contain
only one root.
Newton-isolated disks. A disk in a set of inclusion disks is said Newton isolated, or simply isolated, if its distance from the
closest disk in the set is at least 3n times its radius. This way, if the disks include the roots of a polynomial p(x), Newton’s
iteration applied to p(x) starting from the center of a Newton isolated disk converges quadratically right from the start to
the root in this disk in view of [18].

Ehrlich–Aberth (EA) iteration. It is defined by the sequence of vectors x(k)
= (x(k)

i) ∈ Cn such that

x(k+1)
i = x(k)

i −
N(x(k)

i)

1 − N(x(k)
i)

n
j=1, j≠i

1
x(k)i −x(k)j

, N(x) = p(x)/p′(x). (3)

An analogous sequence can be generated in the Gauss–Seidel style. The Newton correction N(x) can be expressed in terms
of S(x) as

N(x) =
S(x)

S(x)
n

i=1

1
x−bi

+ S ′(x)
. (4)

If convergent, the sequence x(k) converges to the n-tuple of the roots of p(x); convergence to simple roots is locally cubic,
it is linear for multiple roots. There is no proof of the global convergence of the EA iteration, however, from the practical
point of view, no results where the sequence fails to converge have been encountered. In the practical use of this iteration,
some control can be set for non-convergence. A nice feature of the iteration (3) is that it can be applied selectively only for
the subscripts i of interest. The cost per iteration is O(nk) arithmetic operations (ops) where k is the number of subscripts
i to which the iteration is applied. Another nice feature is that the iteration can be easily parallelized. The EA iteration
performs implicit deflation of the roots without computing quotient and remainder and, unlike the iterations based on
explicit deflation, it is self correcting.
Root-neighborhood. For a polynomial p(x) =

n
i=0 pix

i and a given ϵ > 0, the ϵ-root-neighborhood of p(x) is the set formed
by the roots of all the polynomials p̃(x) =

n
i=0 p̃ix

i, where p̃i = pi(1 + ϵi), |ϵi| ≤ ϵ. The ϵ-root-neighborhood of S(x) =n
i=1

ai
x−bi

− 1 is the set formed by the roots of the secular function S(x) =
n

i=1
ãi

x−bi
− 1, where ãi = ai(1 + ϵi), |ϵi| ≤ ϵ.

The general lines of the strategy on which MPSolve is based are reported below. Here, the goal is to arrive at isolating all
the roots up to d guaranteed correct digits.

1. The EA iteration is applied with a working precision of w = 53 bits until all the approximations are in the ϵ-root-
neighborhood for ϵ = γ un, u = 2−w , and γ is a suitable constant whose value comes from the rounding error analysis
of the Horner rule.

2. A set of inclusion disks is computed. If all the disks are isolated, then the algorithm stops and the approximations are
delivered. The algorithm stops also if the overlapping disks, if any, have radii which guarantee at least d correct digits in
the approximation.

3. If there are some overlapping or non-isolated disks (unsolved clusters), then the number of digits of theworking precision
is doubled, i.e., we set w := 2w, and the Ehrlich–Aberth iteration (3) is applied with the new higher precision only for
the indices i corresponding to the approximations in these clusters until the computed approximations are in the ϵ-root-
neighborhood, ϵ = γ un. The computation is continued from step 2.

The algorithm delivers a set of inclusion disks where each disk is either isolated or its center provides a guaranteed
approximation to a root with d digits. With this strategy, the working precision is tuned according to the closeness and the
conditioning of the roots. High precision is used only where it is needed to zoom in and to solve the tight clusters if any. A
polynomial with few clustered roots is not a difficult polynomial. In fact almost all the roots are computedwith the standard
floating point arithmetic and the more expensive large precision is used only for the few clustered roots. This approach can
encounter slowdown in the case of polynomials having almost all ill-conditioned roots.

A different strategy is used by Eigensolve where the roots of S(x), or equivalently of the polynomial p(x), are viewed as
the eigenvalues of the matrix A(a, b) = diag(b1, . . . , bn)− aeT , for a = (a1, . . . , an)T , e = (1, . . . , 1)T , and ai defined in (2).
This strategy for computing all the roots of p(x) with d correct digits is outlined below.

1. The QR iteration is applied to the companion matrix associated with p(x) with working precision w = d until some
approximations ξ1, . . . , ξn to the roots are delivered.

4 D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () –

2. (Regeneration) Set bi = ξi for i = 1, . . . , n and compute ai by means of (2) with a sufficiently high working precision
which guarantees at least w correct digits in the computed ai.

3. Apply the QR iteration to thematrix A(a, b)with working precisionw until some new approximations of the eigenvalues
of A are delivered. If a suitable stop condition is satisfied then output the approximations and exit. Otherwise continue
from step 2.

The idea at the basis of this strategy is that the roots of S(x) are better conditioned if the nodes bi are close to the roots. The
computation at step 2 must be performed in a higher working precision in order to keep under control the loss of accuracy
in the computation of p(x). The advantage of this approach is the fact that high precision is not required in the iterative part
of the algorithmwhich is expected to be the most cumbersome. High precision is left only for the regeneration stage. This is
particularly appreciated in the case of polynomials withmany ill conditioned roots whereMPSolve requires a large working
precision in all the iterations.

However, there are somedrawbacks of the Eigensolve approach. The first is that theQR iteration requiresO(n3) arithmetic
operations. The second is that this strategy cannot take full advantage from the existence of few ill conditioned roots. In fact,
the existence of ill conditioned roots, independently of their number, implies a large number of regenerations in the above
scheme. Another drawback is that the cheaper goal of isolating the roots cannot be fulfilled by this approach.

The algorithm that we propose combines the two above strategies and maintains the advantages of both MPSolve and
Eigensolve. The new strategy is outlined in the algorithm below.

Algorithm 1. 1. Set w = 53, apply the EA iteration to p(x) and obtain some preliminary approximations ξ1, . . . , ξn to the
roots.

2. Set bi = ξi, i = 1, . . . , n and compute ai from (2) with a sufficiently high precision which guarantees w correct digits in
the computed ai. The disks of center bi and radius n|ai| provide a set of inclusion disks

3. If all the disks are Newton isolated or the overlapping disks have radii which guarantee at least w correct digits in the
approximation proceed at step 4. Otherwise, with the working precision w and by relying on (4) with input data bi and
ai, apply the EA iteration (3) to the polynomial Π(x)S(x) only for those approximations which are not yet isolated. Halt
the iterations when these approximations are in the ϵ-root-neighborhood for ϵ = γ u log2 n, u = 2−w . The constant γ is
determined by the backward error analysis in the computation of S(x). Continue from step 2.

4. Halt the iteration if all the disks are isolated or the overlapping disks have radii which guarantee at least d correct digits
in the approximation. Otherwise double the working precision, i.e., set w := 2w and continue from step 2.

With this strategy, we can preserve the advantages of the MPSolve approach since the higher precision is used only for
the clustered roots by means of a selective application of the EA iteration and by using different levels of working precision.
At the same time the algorithm keeps the advantages of Eigensolve by providing refined representations of the secular
equation where the roots improve their conditioning as long as the nodes get close to the roots. Another advantage is that
the cost per step is O(nk) ops, where k is the number of the current unsolved approximations. Finally, the radius of the
root-neighborhood is O(u log2 n) whereas for the polynomial case (MPSolve) is O(nu).

In order to implement this strategy we need to develop suitable tools and theoretical results that we describe below.

2.1. Main theoretical results

In the design of our algorithm we need some theoretical properties that provide effective tools for the actual
implementation of the above strategy. Here we give an outline of the main theoretical results proved in the paper.

A rounding error analysis of the computation of S(x) enables us to prove that the computed value flu (Sx) still contains
some correct digits if

|flu (Sx) | > u(1 + κn)σ (x), for κn = ⌈log2 n⌉ + 7
√
2, σ (x) =

n
i=1

 ai
x − bi

 .
Here, flu (·) denotes the result obtained in floating point arithmetic with machine precision u. Therefore, if the above
inequality is not satisfied (stop condition) then the iteration is halted since no improvement is expected.

The concept of ϵ-root-neighborhood introduced in [17] for polynomials and exploited in [16], is extended to the case
of secular functions. In particular we prove that the ϵ-root-neighborhood of S(x) coincides with the set {x ∈ C : |S(x)| ≤

ϵσ (x)}. This fact allows us to prove that any approximation satisfying our stop condition belongs to the ϵ-root-neighborhood
where ϵ = 2uκnσ(x). That is, the approximation is the exact root of a slightly perturbed secular equation.

In the case of polynomials, a similar result has been proved in [16] where the term κn is replaced by (2
√
2+ 1)n+ 1. The

reduction from n to log2 n shows that the secular equation approach is computationally more favorable.
Another theoretical result proved in the paper, fundamental for the effectiveness of our algorithm, shows that the

condition number of the roots of S(x), as functions of the coefficients ai, converges to zero as the nodes bi converge to
the roots of S(x). This property holds also for a multiple root if the convergence of the different approximation to the same
multiple root respects some mild conditions. In our algorithm these conditions are satisfied by the way the approximations

D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () – 5

generated by the EA iteration converge to multiple roots [13]. This fact explains why approximations to multiple roots are
not affected by the large condition number, and confirms the effectiveness of using secular functions instead of polynomials.

The algorithm relies on guaranteed a posteriori error bounds obtained by representing the roots in terms of the
eigenvalues of a suitable structured matrix to which the Gerschgorin theorem is successfully applied.

As already mentioned, the main engine for approximating the roots is the EA iteration [13,14] which is applied to the
monic polynomial p(x) = S(x)Π(x). In principle, we might have applied the technology of semiseparable matrices [19] to
implement the QR iteration at low cost. However, we did not make it since the available algorithms do not yet allow to deal
with complex matrices in an effective, reliable and robust way.

3. Numerical issues

In this section we deal with two important facts about secular equations which are related to each other. The first is that
the evaluation of a secular equation in floating point arithmetic with machine precision u can be performed by means of
backward stable algorithms with backward errors which grow as u log2 n. The second concerns the analysis of the ϵ-root-
neighborhood of a secular function S(x). As a consequence, we provide an effective stop condition for any iteration which
approximates the secular roots relying on the valueS(x) actually computed in floating point arithmetic in place of S(x).

Instead of performing a first order error analysis, where the error bounds are reported only in their linear part in u, we
provide exact bounds which hold for any value of the machine precision u. For this reason we introduce the useful function
ν(k) = k/(1 − ku). The reader interested in a first order error analysis may simply replace ν(k) with k. We also use the
symbol .

= to denote equality of the linear parts of the error bounds so that we may write ν(k)u .
= ku. Similarly we do with

≤̇. We refer the reader to Sections 3.4 and 3.6 of the book [20] for more details. We recall the following result from [20]
which resumes the basic properties that we need for our rounding error analysis.

Proposition 2. For any positive k such that ku < 1 define ν(k) =
k

1−ku and let νk denote a quantity bounded according to
|νk| ≤ ν(k)u < 1. Then

(1 + νk)(1 + νj) = 1 + νk+j

1 + νk

1 + νj
= 1 + νk+j,

(5)

as long as 0 < (k + j)u < 1. Moreover, for the floating point operations between complex numbers it holds that

flu (a + b) = (a + b)(1 + ϵ±),

flu (ab) = ab(1 + ϵ∗), flu (a ÷ b) = a ÷ b(1 + ϵ÷),

|ϵ±| ≤ u, |ϵ∗| ≤ ν(2)
√
2u, |ϵ÷| ≤ ν(7)

√
2u.

(6)

Proof. Concerning Eq. (5) we provide a proof which holds also for non-integer values of k as otherwise required in [20].
Define f (x) =

x
1−x so that ν(k)u = f (ku). Then, to show that (1 + νk)(1 + νj) = 1 + νk+j, it is enough to prove that for any

pair a, b > 0 of reals such that a + b < 1, it holds that (1 + f (a))(1 + f (b)) ≤ 1 + f (a + b). Since 1 + f (a) =
1

1−a , the
latter inequality turns into (1 − a)(1 − b) ≥ 1 − a − b which is trivially satisfied. Similarly, the equation 1+νk

1+νj
= 1 + νk+j

is equivalent to 1+f (a)
1+f (b) ≤ 1 + f (a + b) which is satisfied since (1 − b)(1 − a − b) ≤ 1 − a for any a, b ≥ 0 such that

0 ≤ a + b < 1. �

Given a vector t = (ti) ∈ Cn consider the following algorithm for computing sum(t) =
n

i=1 ti:

sum(t) = sum(t+) + sum(t−), if n > 1,
sum(t) = t, if n = 1,
t+ = (t1, . . . , tm), t− = (tm+1, . . . , tn), m = ⌈n/2⌉.

(7)

Denote flu (sum(t)) the value obtained by performing the algorithm in floating point arithmetic with precision u.
By applying Proposition 2 it is easy to see that the computation (7) is backward stable that is

flu (sum(t)) =

n
i=1

ti(1 + δi), |δi| ≤ uν(⌈log2 n⌉). (8)

The value S(x) of the secular function S at x can be computed in the following way

ti = ai/(x − bi), for i = 1, . . . , n,
S(x) = sum(t) − 1.

(9)

6 D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () –

This algorithm performs the computation in 2n additions and n divisions. By applying (6), it turns out that the actual
value flu (t) computed in place of t at each step of this algorithm, when using floating point arithmetic, is given by

flu (t) =
ai

x − bi

1 + ϵ
(i)
÷

1 + ϵ
(i)
±

where ϵ
(i)
÷ and ϵ

(i)
± are the local errors of division and subtraction. That is, in view of Proposition 2, one has

flu (t) =
ai

x − bi
(1 + ϵi), where |ϵi| ≤ ν(1 + 7

√
2)u .

= (1 + 7
√
2)u.

Summing up all the terms and using (8) yields the following expression

flu (S(x)) =

n

i=1

ai(1 + δi)(1 + ϵi)

x − bi
− 1

(1 + δ) (10)

where δ is the local error generated in computing the last subtraction such that |δ| ≤ u. By applying (5) to Eq. (10) we obtain
the following result concerning the backward stability of Algorithm (9).

Proposition 3. Algorithm (9) for the evaluation of the secular function

S(x) =

n
i=1

ai
x − bi

− c

is such that

flu (S(x)) =

n

i=1

ai
x − bi

(1 + θi) − c

(1 + δ)

where |δ| ≤ u, |θi| ≤ κnu, κn = ν(⌈log2 n⌉ + 7
√
2). That is, flu (S(x)) =

n
i=1

ãi
x−bi

− c̃ =: S(x), where ãi =

ai(1 + δi)(1 + δ), c̃ = c(1 + δ).

From the above result we obtain that

flu (S(x)) = (1 + δ)

S(x) +

n
i=1

ai
x − bi

θi

. (11)

This equation provides the useful properties reported in the following

Corollary 4. For the values S(x) and flu (S(x)) the following inequalities hold

|S(x)| ≤
1

1 − u
|flu (S(x))| + uκnσ(x),

|flu (S(x))| ≤ (1 + u) |S(x)| + u(1 + u)κnσ(x).
(12)

Moreover

flu (S(x)) − S(x)
flu (S(x))

= δ
S(x)

flu (S(x))
+ (1 + δ)

1
flu (S(x))

n
i=1

ai
x − bi

θi, flu (S(x)) − S(x)
flu (S(x))

 ≤ u(ν(1) +
κnσ(x)
flu (S(x))

) + 2u2 κnσ(x)
flu (S(x))

.

(13)

Proof. The first two inequalities (12) as well as the equation in (13) are immediate consequences of (11). To prove the
inequality in (13) take the moduli of both sides of (13), apply the triangle inequality and obtain that flu (S(x)) − S(x)

flu (S(x))

 ≤ u
 S(x)
flu (S(x))

+ 1
flu (S(x))

(1 + u)knuσ(x).

Deduce from (12) that S(x)
flu (S(x))

 ≤
1

1 − u
+ u

 knσ(x)
flu (S(x))

 .
Replace the latter inequality in the former and obtain the result. �

Remark 5. The inequalities provided in the above corollary, are strict in the sense that they turn to equalities for specific
choices of the values δ and θi satisfying the conditions |δ| = u, |θi| = κnu.

D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () – 7

3.1. Stop condition

An important issue encountered in the implementation of numerical root-finders based on iterative processes is when to
halt the iteration. In general, if the computed value flu (S(x)) still contains information, it is worth continuing the iteration.
This happens if the relative error

 S(x)−flu(S(x))
flu(S(x))

 of the computation is less than 1. In fact, in this case at least one bit of
information is contained in the computed value flu (S(x)).

Corollary 4 provides a means to implement a stop condition based on the relative error estimate in the computation of
flu (S(x)). In fact, observe that, if

|flu (S(x))| ≤ κnuσ(x)
(1 + 2u)(1 − u)

1 − 2u
.
= κnuσ(x), (14)

then the upper bound to the modulus of the relative error provided in Corollary 4 is greater than or equal to one. In this
case, there is no guarantee that the computed value flu (S(x)) contains correct information. This way, condition (14) can be
used as a test for halting the iterations in any secular root-finder which relies on the information contained in the computed
value flu (S(x)).

3.2. Root neighborhoods

Here we analyze the concept of ϵ root-neighborhood of S(x), relate it to the properties of backward stability introduced
in Proposition 3 and to the halt condition (14). Then we extend to secular equations the properties of root-neighborhoods
proved in [16] in the case of polynomials.

Definition 6. Let ϵ be a positive real number. Given the secular function S(x) defined in (1), we call ϵ-secular-neighborhood
of S(x) the set

SNϵ(S) =

S(x) =

n
i=1

âi
x − bi

− 1, âi = ai(1 + ϵi), |ϵi| ≤ ϵ

.

We call ϵ-root-neighborhood of S(x) the set

RNϵ(S) =

ξ ∈ C|∃S(x) ∈ SNϵ(x) such thatS(ξ) = 0

.

The concept of root neighborhood replaces the concept of root in the case of secular equations where the coefficients ai
are approximately knownwithin a relative error bounded by ϵ. In designing a floating point root-finder, the goal is to arrive
at computing approximations to the roots of S(x) belonging to RNϵ(S) for some value of ϵ ≥ u as close as possible to u. We
will prove here that ϵ has the order of magnitude of u log2 n.

Recall that the roots of a polynomial are continuous functions of its coefficients. Therefore, since p(x) = S(x)Π(x) has
the same roots as S(x), we deduce that the roots of S(x) are continuous functions of the coefficients ai. This fact, together
with the above definition, allows us to prove the following

Proposition 7. Let S(x) be the secular function of (1). The sets SNϵ(S) and RNϵ(S) satisfy the following properties
1. SNδ(S) ⊆ SNϵ(S) for 0 < δ ≤ ϵ;
2. RNδ(S) ⊆ RNϵ(S) for 0 < δ ≤ ϵ;
3. SNϵ(S) is convex;
4. if Uϵ is a connected component of RNϵ(S) then all the secular functionS(x) ∈ SNϵ(S) have the same number of roots in Uϵ ;
5. if RNδ(S) is formed by n connected components then any secular functionS(x) ∈ SNϵ(S) has exactly one root in each

component.

Proof. Part 1 follows directly from the definition. Part 2 is an immediate consequence of part 1. IfS(x),S(x) ∈ SNϵ(S) then
âi = ai(1 + ϵ̂i), ãi = ai(1 + ϵ̃i), with |ϵ̂i| ≤ ϵ and |ϵ̃i| ≤ ϵ, where âi and ãi are the coefficients ofS(x) andS(x), respectively.
Therefore, the function St(x) = tS(x)+ (1− t)S(x), for 0 ≤ t ≤ 1 has coefficients tai(1+ ϵ̂i)+ (1− t)ai(1+ ϵ̃i) = ai(1+ ϵ̌i)
where ϵ̌i = t ϵ̂i + (1 − t)ϵ̃i. Whence |ϵ̌i| ≤ tϵ + (1 − t)ϵ = ϵ, that is St(x) ∈ SNϵ(S). This completes the proof of part 3.
Concerning part 4, letS(x),S(x) ∈ SNϵ(S) and define St(x) as before. For the continuity of the roots of St(x) as functions of
t , it follows that the number of roots of St(x) in the connected component Uϵ is constant with respect to t . Otherwise some
root would necessarily move out of Uϵ and therefore out of RNϵ(S). HenceS(x) andS(x) must have the same number of
roots in Uϵ . Finally, part 5 follows since the connected components cannot be empty and there cannot be more than n roots
of S(x). �

For the sake of notational simplicity, in the followingwewrite RNϵ in place of RNϵ(S). Apparently, checking the condition
ξ ∈ RNϵ does not seem to be an easy task. In the next proposition we provide a computationally cheap way to test if a given
ξ belongs to RNϵ . Let ϵ be a positive real number. Define the set Rϵ = {x ∈ C| |S(x)| ≤ ϵσ (x)}. The following useful result
relates RNϵ and Rϵ .

8 D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () –

Proposition 8. It holds that RNϵ = Rϵ .

Proof. If ξ ∈ RNϵ then there exist ϵi, |ϵi| ≤ ϵ, such that
n

i=1
ai

ξ−bi
(1+ ϵi)− 1 = 0. This implies that S(ξ) = −

n
i=1

ai
ξ−bi

ϵi,
whence |S(ξ)| ≤ σ(ξ)ϵ, that is ξ ∈ Rϵ .

If ξ ∈ Rϵ , then for η = S(ξ) one has |η| ≤ ϵσ (ξ). Set

δi = −
ξ − bi

ai

 ai
ξ − bi

 η

σ
(ξ)

and find that |δi| ≤

 η

σ(ξ)

 ≤ ϵ, moreover,

n
i=1

ai
ξ − bi

δi = −
η

σ(ξ)

n
i=1

 ai
ξ − bi

 = −σ(ξ).

Whence,S(ξ) = 0 withS(x) =
n

i=1
ai

x−bi
(1 + δi) − 1. That is ξ ∈ RNϵ . �

In the actual computations in floating point arithmetic, due to the round-off errors, we cannot check if ξ ∈ Rϵ . What we
can do is to test the condition x ∈ RNϵ,u whereRNϵ,u = {x ∈ C : |flu (S(x))| ≤ ϵσ (x)} .

In view of Proposition 8 and Corollary 4, we find that for a given ϵ and a given machine precision u the following property
holds

Proposition 9. Let ϵ be such that ϵ ≥ (1 + u)uκn. Then

RNϵ/(1+u)−uκn ⊆ RNϵ,u ⊆ RNν(1)ϵ+uκnRN (1−u)(ϵ−uκn),u ⊆ RNϵ ⊆ RN (1+u)(ϵ+uκn),u.

Proof. Concerning the inclusion RNϵ ⊆ RN(1+u)(ϵ+κnu),u, if x ∈ RNϵ , then by Proposition 8 |S(x)| ≤ ϵσ (x). Therefore, from
Corollary 4 one has |flu (S(x))| ≤ (1 + u)(ϵ + uκn)σ (x). Whence we deduce that x ∈ RN(1+u)(ϵ+κnu),u.

Concerning the inclusion RNϵ ⊆ RN(1+u)(ϵ+uκn),u, we find that if x ∈ RNϵ,u then |flu (S(x))| ≤ ϵσ (x). Therefore, from
Corollary 4, we deduce that |S(x)| ≤

 1
1−uϵ + κnu

σ(x). Since 1/(1 − u) = ν(1), the proof of this inclusion is completed.

The remaining inclusions follow from these ones. �

It is interesting to point out that if x satisfies the implementable stop condition (14) then x ∈ RNϵ,u with ϵ =

κnu (1+2u)(1−u)
1−2u so that, in view of Proposition 9 one finds that

RNν(1)ν(2)u2κn ⊆ RNκnu,u ⊆ RNν(2)uκn . (15)

This property extends to the case of secular equations a similar property valid for polynomials and proved in [11]. The
advantage of secular equations is that kn has a logarithmic growth with respect to n, whereas for polynomials kn grows
linearly with n.

We may conclude with the following important fact

Fact 10. Applying any algorithm that relies on the halt condition (14) and runswith a floating point arithmeticwithmachine
precision u, provides approximation to the roots of S(x) which are the exact roots of secular equations with the coefficients
perturbed by a relative error at most 2κnu

1−2u
.
= 2κnu.

4. Representing equivalent secular functions on different sets of nodes

Multiplying S(x) by the polynomialΠ(x) = −
n

i=1(x−bi) provides themonic polynomial of degree n p(x) = Π(x)S(x).
From this equation we deduce the following relation between p(x) and the coefficients ai of S(x).

ai =
p(bi)

n
j=1, j≠i

(bi − bj)
. (16)

Given the secular function S(x) defined in (1), and given a new set of nodes b̃1, . . . , b̃n, we may wish to construct
an equivalent function using the new set of nodes, i.e., to find ã1, . . . , ãn such that S(x) =

n
i=1

ãi
x−b̃i

− 1 has the

same roots as S(x). This condition can be restated as an equality between the polynomials associated with S(x) and Ŝ(x),

D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () – 9

i.e.,
n

j=1(x − bi)S(x) =
n

j=1(x − b̃i)S(x). In terms of the coefficients, we obtain

ãi = (b̃i − bj)
n

j=1, j≠i

b̃i − bj
b̃i − b̃j

n

k=1

ak
b̃i − bk

− 1

. (17)

This equation provides a tool for constructing the equivalent functionS(x) in a different set of nodes with the overall cost
of O(n2) operations.

It is possible to estimate the working precision of the floating point computation which guarantees a relative error in the
actually computed coefficients ãi bounded by a given ϵ. This estimate can be performed during the computation.

In the case where a few bi’s, say k, have been changed it is possible to give a different expression for the coefficients âi
which is much less expensive than (17). More specifically we can suppose, without loss of generality, that bi ≠ b̂i only for
i = 1, . . . , k. We have, for every i = k + 1, . . . , n:

âi = ai
k

j=1

bi − bj
b̂i − bj

while the formula (17) can be used for i = 1, . . . , k. It is easy to show that this ‘‘partial’’ regeneration can be implemented
with O(kn) arithmetic operations.

4.1. Matrix formulation and Gerschgorin disks

Secular equations are closely related tomatrix eigenvalue problems. Here we recall some known properties andwe refer
the reader for more details to [21–23] and to the references cited therein.

Consider the matrix

A = D − aeT (18)

where D = diag(b1, . . . , bn), a = (ai), and e is the vector with components equal to 1. Observe that (xI − A) =

(xI − D)(I − (xI − D)−1aeT) so that

p(x) = det(xI − A) =

n
i=1

(x − bi)(1 − eT (xI − D)−1a) = Π(x)S(x)

where Π(x) = −
n

i=1(x − bi). Therefore, the eigenvalues of A coincide with the roots of the secular function S(x). This
property enables us to provide a set of inclusion disks for the roots of S(x), just by applying the Gerschgorin theorem either
to A or to AT . We recall that in view of the Gerschgorin theorem, the set of eigenvalues of A is contained in the union of
the Gerschgorin disks B(bi − ai, ri) of center bi − ai and radius ri = (n − 1)|ai|, i = 1, . . . , n. Moreover, any connected
component of this union formed by k disks contains exactly k eigenvalues of A. That is they form a set of inclusion disks. For
the sake of simplicity, we use a different formulation of this theoremwhere the Gerschgorin disks are replaced by the disks
Gi = B(bi, n|ai|) of center bi and radius n|ai|. It is easy to show that these disks still form a set of inclusion disks.

Given a set of approximations b̃1, . . . , b̃n to the roots of S(x), it is possible to construct the equivalent functionS(x) in the
new set of nodes b̃1, . . . , b̃n by means of (17), with a sufficient working precision which guarantees a relative error in the
computed ãi bounded by u. This way, we find that the disks B(b̃i, r̃i), r̃i = n|ãi|(1 + u), i = 1, . . . , n, form a set of inclusion
disks.

The following result relates Gerschgorin disks and the root-neighborhoods.

Proposition 11. If x ∈ RNϵ(S) then there exists k such that |x − bk| ≤ n |ak| (1+ ϵ). In particular, the union of the Gerschgorin
disks B(bi, ri), ri = n |ai| (1 + ϵ) contains RNϵ(S).

Proof. If x ∈ RNϵ(S) then
n

i=1
ai

x−bi
(1 + ϵi) − 1 = 0 with |ϵi| ≤ ϵ. Let k be such that |ak| = maxi

 ai
x−bi

 and deduce that

1 ≤ n
 ak
x−bk

 (1 + ϵ), whence |x − bk| ≤ n |ak| (1 + ϵ). �

Observe that any connected component of the union of the Gerschgorin disks contains one or more connected
components of the root-neighborhood and the number of disks forming the component enable us to count the number
of roots of any secular function in the subset of the secular neighborhood.

Observe also that, if x satisfies the stop condition (14) then, in view of (15), x ∈ RNν(2)uκn . That is there exists k such that
the disk B(bk, r) contains a root of S(x) where r = ak

1 + σ(x)

2κn

u
1−2u

.

Another inclusion result can be obtained by using the property that for a given polynomial p(x) and for a given ξ there
exists a root of p(x) in the disk B(ξ , r) for r = n|p(ξ)/p′(ξ)|, see for instance [24]. Sometimes this bound can be more
accurate than the one obtained by the Gerschgorin disks. However, applying this inclusion to the set of nodes b1, . . . , bn

10 D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () –

provides disks which, in general, do not form a set of inclusion disks. By relying on the relation p(x) = Π(x)S(x) one finds
that

p(x)/p′(x) =
S(x)

S(x)
n

i=1

1
x−bi

+ S ′(x)
(19)

which is computable in O(n) operations.
Eq. (19) provides the Newton correction which is used not only in the Newton iteration but also in the Ehrlich–Aberth

iteration described in the next Section 6. This equation cannot be applied in this form if x = bk for some k. In this case the
following alternative can be used

p(bk)/p′(bk) =
ak

n
i=1, i≠k

ai+ak
bk−bi

− 1
. (20)

It is convenient to complement condition (14) with the additional test

|p(x)/p′(x)| ≤ u|x|. (21)

In fact, if this condition is satisfied, then there is a root in the disk of center x and radius r = n|p(x)/p′(x)| that is x
approximates this root with a relative error at most r/|x| ≤ nu. On the other hand, if (21) is satisfied then the Newton
correction is so small that it cannot increase the precision of the new approximation.

5. Perturbation result

In this sectionwe analyze the variation of a root ξ of S(x)when the coefficients ai aremodified by a relative perturbation ϵ.

5.1. Estimating the conditioning of a root

Let j be an integer such that 1 ≤ j ≤ n. Consider the perturbed secular function Ŝ(x) =
n

i=1
âi

x−bi
− 1 where âi = ai for

i ≠ j and âj = aj + ajϵj, |ϵj| ≤ ϵ.
Let ξ be a root of S(x), and ξ̂ the root of Ŝ(x) closest to ξ so that

n
i=1

ai
ξ − bi

− 1 = 0,

n
i=1

âi
ξ̂ − bi

− 1 = 0.

Setting δξ := ξ̂ − ξ , and subtracting both sides in the above system yields
n

i=1

ai
(ξ − bi)(ξ̂ − bi)

δξ −

ajϵj
ξ̂ − bj

= 0.

From this relation we can easily obtain the explicit expression for the fraction δξ

ϵj
that represents exactly the variation of the

root ξ when the coefficient aj is perturbed. More precisely we have

δξ

ϵj
=

aj

(ξ̂ − bj)

n
i=1

ai
(ξ−bi)(ξ̂−bi)

 , (22)

so that, since ξ̂ − bi = ξ − bi + δξ , we arrive at the following estimate:δξ

ϵj

 =
|aj|

|ξ − bj||S ′(ξ)|
+ O(δ2

ξ).

In the casewhere all the coefficients aj are perturbed by the relative error ϵj with |ϵj| ≤ ϵ, by following the same argument
as above, we may prove that

δξ

 ≤̇

n
i=1

aiϵi/(ξ − bi)

S ′(ξ)

 ≤
ϵσ (ξ)

|S ′(ξ)|
,

D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () – 11

where ≤̇ denotes inequality up to terms of higher order in the errors. Whence we obtain the following first order bound to
the condition number of the root ξ

|δξ |

ϵ
≤

σ(ξ)

|S ′(ξ)|
. (23)

5.2. Conditioning and the choice of nodes

Given a secular function S(x), we can consider equivalent functionsS(x) representedwith respect to different set of nodes.
It is interesting to study how the conditioning of the roots ofS(x) depends on the set of nodes used in the representation.

Assume that for a given k, ξk is a simple root of S(x), that is S ′(ξk) ≠ 0 and p′(ξk) ≠ 0 where p(x) = Π(x)S(x).
Eq. (23) says that in a first order error analysis the condition number of the root ξk is bounded by σ(ξk)/|S ′(ξk)|. Recall
that σ(ξk) =

n
j=1 |

aj
ξk−bj

| and that aj = p(bj)/
n

i=1, i≠j(bj − bi). Now, let bi tend to ξi for i = 1, . . . , n and analyze the
limit of aj. If j ≠ k, the limit of aj is clearly zero. In fact, in the limit, aj converges to p(ξj)/p′(ξj). Therefore in the summation
σ(ξk) =

n
j=1 |aj/(ξk − bj)| the only term of interest is the one such that j = k. On the other hand, if j = k we may write

ak =
ϵkp′(ξk) + O(ϵ2

k)
n

j=1, j≠k
(ξk − ξj + ϵk − ϵj)

, ϵj = ξj − bj,

so that

 ak
ξk − bk

 =

akϵk
 =

p′(ξk) + O(ϵk)

n
j=1, j≠k

(ξk − ξj + ϵk − ϵj)

 .
If ϵj converge to zero then the denominator in the right-hand side of the above expression converges to p′(ξk) so that the
quantity |

ak
ξk−bk

| as well as σ(ξk) converge to 1. To analyze the condition number σ(ξk)/|S ′(ξk)|, it remains to study the

behavior of S ′(ξk) when bi converge to ξi. We have S ′(ξk) = −
n

j=1
aj

(ξk−bj)2
. Once again, if j ≠ k the term aj

(ξk−bj)2
converges

to zero. For j = k, we may write
ak

(ξk − bk)2
= ϵ−1

k
ak

(ξk − bk)
,

where we have already pointed out that |
ak

(ξk−bk)
| converges to 1. This means that the ratio σ(ξk)/|S ′(ξk)| which express a

first order bound to the condition number of the root ξk converges to zero.
In other words, for simple roots the condition number decreases to zero when the nodes bi get close to the roots.
For roots with multiplicity greater than one the analysis is more involved. Let |ϵj| ≤ ϵ and consider the case of a

root ξ of multiplicity m > 1. For simplicity, assume that ξ = ξ1 = · · · = ξm. In this case S(i)(ξ) = p(i)(ξ) = 0 for
i = 1, . . . ,m − 1, S(m)(ξ), p(m)(ξ) ≠ 0. This way, for k = 1, . . . ,m (16) turns into

ak =
ϵm
k p(m)(ξ) + O(ϵm+1

k)
n

j=1, j≠k
(ξ − ξj + ϵk − ϵj)

, ϵj = ξj − bj.

We rewrite the product in the denominator of the above equation as
n

j=1, j≠k

(ξ − ξj + ϵk − ϵj) =

m
j=1, j≠k

(ϵk − ϵj)

n
j=m+1

(ξ − ξj + ϵk − ϵj)

=

m
j=1, j≠k

(ϵk − ϵj)

p(m)(ξ) + O(ϵ)

,

so that, since ϵk − ϵj = bj − bk, one has

ak
ξ − bk

=
ϵm−1
k

m
j=1, j≠k

(bj − bk)
+ O(ϵ) =: η + O(ϵ).

12 D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () –

If convergence of the nodes b1, . . . , bm to the multiple root ξ is such that the function η =
ϵm−1
km

j=1, j≠k(bj−bk)
is bounded

from below in modulus, then the same argument used in the case of simple roots applies and we conclude that also the
conditioning of multiple roots converges to zero as the nodes converge to the roots. The boundedness from below of |η| is
satisfied if the nodes b1, . . . , bm are well separated, say, if bi = ξ + ϵωi

m, where ωm is a principal mth root of 1. In fact, in
this case one has |

m
j=1, j≠k(bj − bk)| = ϵm−1

|
m

j=1, j≠k(ω
k
m − ω

j
m)| = (m − 1)ϵm−1.

It is interesting to observe that due to the implicit deflation performed in the Ehrlich–Aberth iteration the convergence
of the approximations tomultiple roots generally respects the property of good separation of the roots. A nice interpretation
of this fact in terms of electric charges which repel each other is given in the original paper by Aberth [13].

In Section 6.1 we present a strategy of relocation of the approximations to the clustered roots of S(x) where the new
approximations are equally placed along a circle centered in the multiple root. This way, the condition of boundedness of
|η| is satisfied.

6. The Ehrlich–Aberth iteration

As already said in the introduction, the main engine to approximate the roots of S(x) that we use is the EA iteration
applied to the monic polynomial p(x) = S(x)Π(x). This method, designed in [13,14], has been successfully used
in the implementation of MPSolve [16,11]. There are no theoretical results concerning the global convergence of the
Ehrlich–Aberth iteration. However, in practice, convergence always occurs and is quite fast if the choice of the initial
approximations is performed in a suitable way.

An effective criterion for choosing initial approximations is reported in [16,11]. We recall it here in terms of the Pellet
theorem [25].

Let c(x) =
n

i=0 cix
i be a polynomial of degree n. We recall that the equation |ch|xh =

n
i=0, i≠h |ci|xi has one real

solution t0 > 0 for h = 0, one real solution sn > 0 for h = n, either no real positive solutions or two positive solutions s < t
otherwise [16].

Let h1, . . . , hp be the values for which the above equation has either one or two positive solutions shi ≤ thi , i = 1, . . . , p,
where we assume s0 = 0, tn = ∞.

Theorem 12 (Pellet Theorem). The open annulus {z ∈ C : shi < |z| < thi} contains no roots of c(x) and of any other polynomial
v(x) =

n
i=0 vixi such that |vi| = |ci|. The closed annulus {z ∈ C : shi−1 ≤ |z| ≤ thi} contains hi − hi−1 roots of c(x) and of

any other polynomial v(x).

The idea of [16] is to choose initial approximations in the nonempty annuli given in the Pellet theorem. However, since
computing the real roots s, may be expensive, in [16] it is proposed an almost inexpensive technique, based on the Newton
polygon construction, which is resumed in the following

Theorem 13. Let (ki, log |cki |), i = 1, . . . , q be the vertexes of the upper part of the convex hull of the set {(k, log |ck|), k =

0, . . . , n}. Then q ≥ p, {h1, . . . , hp} ⊆ {k1, . . . , kq}, moreover, {r1, . . . , rq−1}∩]shi , thi [= ∅, for ri =

 cki
cki+1

 1
(ki+1−ki)

The criterion for choosing starting approximation is the following: choose ki+1 − ki approximations equally placed along
the circle of center 0 and radius ri. As a consequence, all the approximations chosen this way belong to the Pellet annuli. The
cost of computing the upper part of the convex hull (Newton polygon) with the indices hi and the radii ri is just O(n log n)
operations.

6.1. Policy of cluster analysis

The criterion based on the Newton polygon, described above, is used in [11] for accelerating convergence in the case of
clustered or multiple roots. Let us recall the following theorem:

Theorem 14 (Marden–Walsh). Assume that the polynomial p(x), of degree n, has m zeros in the disk B(c, r) and n − m zeros
outside the disk B(c, R), where 0 < r < R. Then, if (r + R)/r > 2n/m then the first derivative P ′(x) has a zero in B(c, r).

Assume that we are given a set of inclusion disks B1, . . . , Bn. If there is a cluster of m overlapping disks, say B1, . . . , Bm
which is sufficiently isolated from the remaining disks so that Theorem 14 guarantees the existence of a root ξ of c(m−1)(x)
in the cluster, compute ξ by applying a few steps of Newton’s iteration to c(m−1)(x). Then compute the coefficients of
v(x) = c(x + ξ) and apply the Newton polygon technique to v(x) for repositioning m initial approximations in the cluster
formed by B1, . . . , Bm. Accept this set of new approximations only if they belong to the union of the cluster of disks.

Indeed, if there is a zero of multiplicitym in the cluster of disks, then it coincides with the simple zero ξ of the (m− 1)st
derivative of c(x), this way it can be readily approximated say by Newton’s iteration. If there is a tight cluster of roots in the

D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () – 13

Fig. 1. Roots of the secular function S3200(x).

Table 1
Timings (in seconds) for computing the roots of
the secular function Sn(x) =

n
i=1

(−1)i

x− 1
i

− 1.

Degree Secsolve Secsolve (mt)

200 0.22 0.08
400 0.78 0.15
800 4.00 0.48

1600 15.90 2.18
3200 63.53 8.26

union of the firstm disks, then the Newton polygon technique provides close approximations. In fact, the tighter the cluster,
the more efficient the location of the roots provided by the Newton polygon.

7. The software package and the numerical experiments

Algorithm1of Section2has been implemented in the languageCby relying on the theoretical tools presented in the above
sections and on the package GMP for multiple precision arithmetic [26]. The software is free and can be downloaded from
http://riccati.dm.unipi.it/mpsolve. The implementation can exploit the parallel capabilities of the architecture. Onmulticore
computers the software provides the highest performances.

7.1. Numerical experiments

We report here some numerical experiments concerning the application of our software to secular and polynomial
equations. Here and hereafter, we refer to our implementation with the term Secsolve. In our tests, we compare the CPU
time of our algorithm with the time of the software Eigensolve of [12] and of the software MPSolve 2.0 of [11].

The tests have been run in two ways: with and without the use of parallelism in order to allow a more fair comparison
with Eigensolve and MPSolve which cannot exploit the advantage of a parallel architecture. Again for a fair comparison, the
goal of the computation has been set to approximating all the roots with 10 decimal digits. The tests were run on a computer
with two 6-core Hyper-ThreadingTM processors that account for a total of 24 virtual cores.

We take, as a first example, the secular function Sn(x) =
n

i=1
(−1)i

x− 1
i

− 1. The CPU time reported in Table 1 clearly shows

that in this case the complexity of our algorithm grows quadratically with the degree. The acronym ‘‘mt’’ denotes the CPU
time for the multi-threading (parallel) implementation of Secsolve. The same table shows that the acceleration due to the
parallel implementation is quite good. The roots of the secular function Sn(x) are shown in Fig. 1.

Among the test polynomials, we treat separately the cases of polynomials having roots with an almost uniformly
distributed numerical conditioning and the case of polynomials having a few ill conditioned roots. The former, is the case
where in principle our algorithm provides the best performances, the latter is the case where the MPSolve strategy should
be most suited. We consider also the case of sparse polynomials having few nonzero coefficients. MPSolve takes a great
advantage from this feature since it relies on the sparse Horner rule, while Eigensolve and Secsolve cannot. The set is
completed relying on the polynomial testsuite of MPSolve.

7.2. Polynomials with almost all ill-conditioned roots

In this class of polynomials we considered the following cases:

http://riccati.dm.unipi.it/mpsolve

14 D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () –

Fig. 2. Roots of the Mandelbrot polynomial of degree 2047.

Fig. 3. The roots of the partition polynomial of degree 3200.

Table 2
Timings for the solution of Mandelbrot polynomials.

Degree MPSolve 2.2 Eigensolve Secsolve Secsolve (mt)

255 2.880 2.250 0.660 0.160
511 31.890 20.050 4.74 0.740

1023 458.040 229.370 36.91 4.510
2047 11158.7 3860.1 313.44 33.33

Mandelbrot polynomials: These polynomials have integer coefficients. They can be obtained by a recurrence relation in the
following way where pk(x) has degree 2k

− 1:
p0(x) = 1
pk+1(x) = xp2k + 1, k = 0, 1,

The roots of these polynomials describe the Mandelbrot set, the roots of the polynomial of degree 1023 are shown in Fig. 2.

Partition polynomials: In these polynomials, the coefficient of xk is a positive integer that coincides with the number of
different ways in which the integer k can be decomposed as a sum of non negative integers. The roots of these polynomials
have a particular pattern, shown in Fig. 3. They have been analyzed in [15] where the packageMPSolve 2.0 was used to solve
the partition polynomial of degree 70.000 in about 30 days of CPU time. Our algorithm can solve it in less than two hours.

In Tables 2 and 3 we report the CPU time of the different implementations. The smallest time has been typed in boldface,
the second smallest time is underlined. One can see that for the polynomials in this class, Secsolve greatly outperforms
MPSolve and Eigensolve. Moreover, if parallelism is allowed, the cost in terms of CPU time is strongly reduced. We may
also notice that the CPU time, as function of the degree, grows substantially slower for Secsolve than for the other two
implementations. The same observation is valid for partition polynomials.

Polynomials with roots along curves: Here we take into consideration the polynomials of the MPSolve benchmark which
have roots placed along curves, namely: the characteristic polynomials of two suitable Toeplitz matrices, the truncated
exponential series, Wilkinson polynomial and orthogonal polynomials like Legendre, Laguerre, Hermite and Chebyshev
polynomials.

D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () – 15

Table 3
Timings for the solution of partition polynomials.

Degree MPSolve 2.2 Eigensolve Secsolve Secsolve (mt)

800 5.5 36.9 2.11 0.46
1600 38.5 390.6 10.86 1.77
3200 213.3 7039.0 53.6 7.78
6400 1303.8 45953.3 287.60 39.67

12800 7845.6 * 1588.41 220.93
25600 * * * 1194.63
51200 * * * 6659.08

Table 4
Timings for the solution of polynomials with few ill-conditioned roots.

MPSolve 2.2 Eigensolve Secsolve Secsolve (mt)

mig1_100_1.pol 0.080 0.210 0.360 0.200
mig1_200.pol 0.020 0.670 0.150 0.130
mig1_200_1.pol 0.200 1.280 1.020 0.580
mig1_500.pol 0.210 8.160 0.640 0.490
mig1_500_1.pol 0.880 24.640 2.800 1.990

Table 5
Timings for the solution of polynomials with roots along curves.

MPSolve 2.2 Eigensolve Secsolve Secsolve (mt)

chebyshev80.pol 0.110 0.080 0.060 0.060
chebyshev160.pol 0.970 0.740 0.260 0.120
chebyshev320.pol 9.380 7.020 1.580 0.290
exp100.pol 0.110 0.140 0.060 0.060
exp200.pol 1.060 1.200 0.290 0.080
exp400.pol 10.260 10.700 6.390 0.720
hermite80.pol 0.040 0.080 0.070 0.050
hermite160.pol 0.550 0.560 0.180 0.100
hermite320.pol 5.320 5.500 1.060 0.200
laguerre80.pol 0.160 0.090 0.060 0.060
laguerre160.pol 1.380 0.720 0.290 0.120
laguerre320.pol 14.670 6.940 6.910 0.720
legendre80.pol 0.100 0.080 0.060 0.060
legendre160.pol 0.970 0.710 0.260 0.120
legendre320.pol 8.970 7.020 1.570 0.280
toep1_128.pol 0.180 0.370 0.090 0.060
toep1_256.pol 1.550 3.040 0.490 0.150
toep2_128.pol 0.420 0.480 0.130 0.090
toep2_256.pol 4.350 4.170 0.820 0.200
wilk40.pol 0.040 0.020 0.020 0.040
wilk80.pol 0.300 0.080 0.090 0.060
wilk160.pol 2.940 0.690 0.460 0.140

Also in this case, we may observe the better performances of Secsolve with respect to Eigensolve and MPSolve.

7.3. Polynomials with few ill conditioned roots

For polynomials in this class, like Mignotte-like polynomials the MPSolve approach is more effective, however, the
performances of our algorithm are not much inferior (See Tables 4 and 5.). Mignotte-like polynomials are of the kind
p(x) = xn + (ax + 1)m with n ≫ m, |a| ≫ 1. They have m − n well conditioned roots roughly placed along a circle
centered at the origin, andm clustered roots placed in a tiny disk centered at −1/a.

7.4. Other polynomials

Here we consider the remaining polynomials of the MPSolve benchmark. This set includes polynomials with sparse
coefficients, that is such that almost all the coefficients are zero, like nroots, nrooti, and sparse. MPSolve takes
advantage of sparsity since it uses the sparse Horner rule for polynomial evaluation, while Eigensolve and Secsolve,
dealing with the secular equation cannot fully exploit sparsity. However, the CPU time of Secsolve is not much larger than
MPSolve, while Eigensolve takes extremely large timings (See Table 6.). For the description of the features of the remaining
polynomials we refer the reader to the MPSolve web page.

16 D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () –

Table 6
Timings for the solution of other polynomials.

MPSolve 2.2 Eigensolve Secsolve Secsolve (mt)

chrma86.pol 0.200 0.090 0.070 0.060
chrma342.pol 19.410 4.440 2.540 0.390
chrma_d84.pol 0.260 0.060 0.080 0.060
chrma_d340.pol 29.710 4.460 3.380 0.510
chrmc343.pol 32.000 5.000 3.490 0.780
chrmc_d171.pol 2.500 0.590 0.470 0.170
chrmc_d683.pol 493.230 37.680 28.090 3.230
curz80.pol 0.090 0.050 0.060 0.050
curz160.pol 0.710 0.360 0.220 0.100
easy400.pol 0.200 1.720 0.200 0.070
easy800.pol 0.760 10.670 0.710 0.140
easy1600.pol 3.040 77.910 2.750 0.370
easy3200.pol 20.740 551.540 24.340 7.110
geom2_40.pol 0.020 0.540 0.020 0.030
geom3_20.pol 0.010 0.020 0.010 0.020
geom3_80.pol 0.020 2.620 0.030 0.040
geom4_80.pol 0.030 2.720 0.040 0.030
kats8.pol 28.870 2.310 2.440 0.410
kir1_10.pol 0.140 0.070 0.100 0.060
kir1_10_mod.pol 0.050 0.040 0.030 0.050
kir1_20.pol 0.640 0.190 0.230 0.150
kir1_20_mod.pol 0.180 0.130 0.080 0.070
kir1_40.pol 6.850 1.570 1.640 0.450
kir1_40_mod.pol 1.180 1.040 0.330 0.160
mult2.pol 0.030 0.040 0.050 0.060
nrooti800.pol 0.100 29.330 0.120 0.070
nrooti1600.pol 0.330 245.930 0.400 0.180
nrooti3200.pol 1.600 * 1.620 0.720
nroots800.pol 0.070 8.380 0.170 0.070
nroots1600.pol 0.340 58.500 0.560 0.210
nroots3200.pol 1.310 404.170 2.240 0.740
sendra80.pol 0.450 0.080 0.090 0.080
sendra160.pol 5.120 0.540 0.630 0.220
sendra320.pol 74.530 4.490 4.830 0.710
sparse200.pol 0.020 0.260 0.030 0.040
sparse400.pol 0.040 1.420 0.060 0.040
sparse800.pol 0.120 8.430 0.150 0.090
sparse6400.pol 6.990 * 10.820 6.800
spiral20.pol 0.100 0.010 0.060 0.060
spiral25.pol 0.200 0.030 0.080 0.080
spiral30.pol 14.830 0.050 0.160 0.100

Acknowledgments

The authors wish to thank the anonymous referees for providing useful suggestions that helped to improve the
presentation of the paper.

References

[1] G.H. Golub, Some modified matrix eigenvalue problems, SIAM Rev. 15 (1973) 318334.
[2] J.J.M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenvalue problem, Numer. Math. 36 (1981) 177–195.
[3] M. Gu, S. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem, SIAM J. Matrix Anal. Appl. 16 (1995) 172–191.
[4] A. Melman, Numerical solution of a secular equation, Numer. Math. 69 (1995) 483–493.
[5] D.R. Fuhrmann, An algorithm for subspace computation with application in signal processing, SIAM J. Matrix Anal. Appl. 9 (2) (1988) 213–220.
[6] A. Amiraslani, P. Lancaster, Rayleigh quotient algorithms for nonsymmetric matrix pencils, Numer. Algorithms 51 (1) (2009) 5–22.
[7] D.A. Bini, L. Gemignani, V. Pan, Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations, Numer. Math.

100 (2005) 373408.
[8] D.A. Bini, L. Gemignani, V.Y. Pan, Improved initialization of the accelerated and robust QR-like polynomial root-finding, Electron. Trans. Numer. Anal.

17 (2004) 195205.
[9] D.A. Bini, L. Gemignani, V.Y. Pan, Inverse power and Durand–Kerner iterations for univariate polynomial root-finding, Comput. Math. Appl. 47 (2–3)

(2004) 447459.
[10] A. Amiraslani, R.M. Corless, L. Gonzalez-Vega, A. Shakoori, Polynomial algebra by values, Tech. Rep. 04-01, Ontario Research Centre for Computer

Algebra, 2004.
[11] D.A. Bini, G. Fiorentino, Design, analysis and implementation of a multiprecision polynomial rootfinder, Numer. Algorithms 23 (2000) 127–173.
[12] S. Fortune, An iterated eigenvalue algorithm for approximating the roots of univariate polynomials, J. Symbolic Comput. 33 (5) (2002) 627–646.
[13] O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp. 27 (122) (1973) 339–344.
[14] L.W. Ehrlich, A modified newton method for polynomials, Commun. ACM 10 (2) (1967) 107–108.
[15] R.P. Boyer, W.M.Y. Goh, Partition polynomials: asymptotics and zeros, in: Tapas in Experimental Mathematics, in: Contemp. Math., vol. 457, Amer.

Math. Soc., Providence, RI, 2008, pp. 99–111.

D.A. Bini, L. Robol / Journal of Computational and Applied Mathematics () – 17

[16] D.A. Bini, Numerical computation of polynomial zeros by means of Aberth’s method, Numer. Algorithms 13 (1996) 179–200.
[17] R.G. Mosier, Root neighborhoods of a polynomial, Math. Comp. 47 (1986) 265–273.
[18] P. Tilli, Convergence conditions of some methods for the simultaneous computation of polynomial zeros, Calcolo 35 (1998) 3–15.
[19] R. Vandebril, M. Van Barel, N. Mastronardi, Matrix Computations and Semiseparable Matrices, The Johns Hopkins University Press, Baltimora, MD,

2008.
[20] N.J. Higham, Accuracy and Stability of Numerical Algorithms, second ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.
[21] A.S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.
[22] C. Carstensen, Inclusion of the roots of a polynomial based on Gerschgorin’s theorem, Numer. Math. 59 (1991) 349–360.
[23] L. Elsner, A remark on simultaneous inclusions of the zeros of a polynomial by Gershgorin’s theorem, Numer. Math. 21 (1973) 425–427.
[24] P. Henrici, Applied and Computational Complex Analysis, Vol. 1, Wiley, 1974.
[25] A.E. Pellet, Sur un mode de séparation des racines des équations et la formule de Lagrange, Bull. Sci. Math. 2 (5) (1881) 393–395.
[26] GMP: The GNU Multiple Precion Arithmetic Library. http://gmplib.org/.

http://gmplib.org/

	Solving secular and polynomial equations: A multiprecision algorithm
	Introduction
	Overview of the algorithm
	Main theoretical results

	Numerical issues
	Stop condition
	Root neighborhoods

	Representing equivalent secular functions on different sets of nodes
	Matrix formulation and Gerschgorin disks

	Perturbation result
	Estimating the conditioning of a root
	Conditioning and the choice of nodes

	The Ehrlich--Aberth iteration
	Policy of cluster analysis

	The software package and the numerical experiments
	Numerical experiments
	Polynomials with almost all ill-conditioned roots
	Polynomials with few ill conditioned roots
	Other polynomials

	Acknowledgments
	References

