
Fast, robust, and accurate low-rank LDLT

quartic equation solver

Wilco Oelen

May 1, 2023

Abstract

A quartic expression Q(z) = z4+Az3+Bz2+Cz+D with real coefficients A,B,C,D
can be written as a quadratic form Q(z) = zTQ(φ)z , where z = [z2, z, 1]T and Q(φ) is
a 3× 3 real symmetric matrix, depending on a parameter φ, which only appears in the
antidiagonal elements of the 3×3 matrix. The parameter φ can be chosen, such that the
rank of Q(φ) drops to 2. The algorithm, presented in this paper, is based on the above
observation, as exploited by P. Strobach [5], but it avoids the introduction of severe
cancellation errors and takes care of exceptional cases where Strobach’s algorithm fails.
A Java program, which implements the algorithm, combined with an extensive test
suite, demonstrates the exceptional performance of the algorithm, in terms of speed,
accuracy, and robustness. The performance of the code is compared to the performance
of other well-established solvers. Up to now, not a single quartic equation could be
found which cannot be handled satisfactorily by the new algorithm.

1 Introduction

Quartic equations can be solved analytically. An analytic solution of the general monic
quartic equation with real coefficients, z4 + Az3 + Bz2 + Cz + D = 0, dates back to the
16th century. It was discovered by Lodovico Ferrari [1]. Using this solution in a software
implementation leads to numerical problems for many quartic equations, due to cancellation
errors [2]. Recently, alternative analytic solutions have been proposed and methods have been
suggested to reduce the numerical problems. However, all of these solutions and methods
suffer from numerical cancellation errors in specific configurations of the coefficients of the
given quartic equation, [3], [4], [5], [6]. A different approach is to use purely numerical
methods. There are several well-established general purpose polynomial equation solvers,
e.g. [7], [8], [9], and there also are numerical methods, specifically designed for quartic
equations [2]. Some of the best numerical methods give accurate results, combined with
good efficiency (MPSOLVE, based on [9], and especially PA17, based on [8]), but even these
efficient methods still are several times more computationally intensive than well-crafted
implementations of one of the analytic solutions.

In this paper, an algorithm is presented, which is accurate and robust, and at the same
time efficient in terms of computational speed. It only is a few tens of percents slower than a
well-crafted purely analytical algorithm, running on the same hardware and using the same
computer language and compiler settings.

1

In chapter 2 an outline of Strobach’s algorithm, see [5], is presented, and it is shown how
Strobach handles numerical cancellation. In chapter 3 a new algorithm, largely based on
Strobach’s algorithm, is presented. It is explained where Strobach’s algorithm fails and how
the new algorithm solves these issues. In chapter 4 a description is given of the software
implementation and how it is compared to other methods. In chapter 5, results are presented,
both in terms of accuracy, and in terms of speed.

2 An outline of the quartic solver algorithm

All analytic solution methods up to very recently (before Strobach’s algorithm, presented in
2015) for the quartic equation with real coefficients, first perform a substitution z = y − A

4

to get an equation in y, which is of the form y4 + py2 + qy+ r = 0, where p, q and r are real
numbers, which can be expressed as polynomials in A, B, C, and D. This is the so-called
depressed form of the quartic equation, which has no third-degree term. Next, the solution
methods attempt to write the depressed quartic form as a product of two quadratic factors,
with real coefficients s, t, u, and v: y4 + py2 + qy + r = (y2 + sy + t)(y2 + uy + v). Different
methods were discovered to obtain values for s, t, u, and v by Ferrari [1], Descartes [10] and
Euler [11], but all these methods eventually boil down to solving a cubic resolvent, which is
the same for all these methods. Numerical cancellation errors can occur in multiple steps
of the solutions. Software implementations of these methods produce inferior results for
tiny roots in cases where the dynamic range of the roots is large. Here, the dynamic range
is defined as the ratio |zmax|/|zmin| of the largest-magnitude root zmax and the smallest-
magnitude root zmin.

Strobach found a new analytic solution of the quartic equation, which also leads to a cubic
resolvent, but this cubic resolvent is different from the one, present in the above-mentioned
methods. A very important difference is that in Strobach’s method, the cubic resolvent
can be computed without appreciable numerical cancellation errors and that it appears in
depressed form (without quadratic term), which also allows its solution to be derived without
risk of excessive loss of precision. Here, an outline is given of Strobach’s algorithm. A full
and detailed description can be found in his paper [5].

2.1 The quartic function as a parameterized quadratic form

Strobach’s solution starts with the monic equation

Q(z) = z4 + Az3 +Bz2 + Cz +D = 0 (1)

where A, B, C, and D are real numbers and D ̸= 0 (when D equals 0, one can use a 3th

degree equation solver).

It is easy to show that the fourth degree polynomial Q(z) can be written as a quadratic
form

Q(z) =
[
z2 z 1

]
Q(φ)

z2z
1

 (2)

2

where

Q(φ) =

1 A

2
(B
6
+ φ

2
)

A
2

(2B
3
− φ) C

2

(B
6
+ φ

2
) C

2
D

 (3)

The φ cancels out perfectly, when this expression is evaluated and written as a scalar poly-
nomial value in z. This property gives us a parameter, which can be freely chosen, without
affecting Q(z).

2.2 Reducing the rank of the quadratic form matrix

In general, the rank of the matrix Q(φ) equals 3, but it is possible to choose φ, such that
the rank of this matrix drops to 2. This is the case if det(Q(φ)) = 0. The determinant of
this matrix can be written as a depressed cubic:

det(Q(φ) = φ3 + gφ+ h (4)

with coefficients g and h, where

g = AC − 4D − B2

3
; h =

(
8D + AC − 2B2

9

)
B

3
− C2 − DA2 . (5)

Strobach developed an algorithm for evaluation of g and h from the coefficients A, B, C, and
D, which does not suffer from numerical cancellation. He also developed a simple and fast
numerical algorithm for finding the dominant root φ0 of the depressed cubic. The dominant
root is the root which is well-conditioned and which can be determined with high accuracy
for all g and h. For real g and h, this dominant root is real as well. For here, it is sufficient
to assume that the depressed cubic (4) can be determined accurately and that a real root φ0

can be found accurately (up to machine precision accuracy) with high efficiency. All details
are given in Strobach’s paper [5], chapter 3.

The matrix Q(φ0) has rank at most equal to 2 and this allows it to be decomposed into
rank-2 LDLT factors:

Q(φ0) =

1 0
ℓ1 1
ℓ3 ℓ2

[1 0
0 d2

] [
1 ℓ1 ℓ3
0 1 ℓ2

]
(6)

The elements ℓ1, ℓ2, ℓ3, and d2 can be derived analytically. How this is done is covered in
chapter 3 of this paper.

2.3 Factorization into quadratics, using rank-2 decomposition

Once we have the elements ℓ1, ℓ2, ℓ3, and d2, as described in equation (6), it is easy to
construct the two quadratic factors of the given quartic Q(z). The quadratic factors in

3

Strobach’s algorithm may be complex (each other’s conjugate), as opposed to the above-
mentioned methods of Ferrari, Descartes and Euler. The inner 2× 2 matrix of equation (6)
can be written as [

1 0
0 d2

]
=

[
1 0
0 γ

] [
1 0
0 σ

] [
1 0
0 γ

]
(7)

where σ = sign{d2} (for non-zero d2 this is either −1 or 1) and γ =
√
|d2|.

The quartic now can be expressed as

Q(z) =
[
z2 z 1

] 1 0
ℓ1 1
ℓ3 ℓ2

[1 0
0 γ

]
︸ ︷︷ ︸

=
[
p1(z) p2(z)

]

[
1 0
0 σ

] [
1 0
0 γ

] [
1 ℓ1 ℓ3
0 1 ℓ2

]z2z
1

︸ ︷︷ ︸

=

p1(z)
p2(z)

(8)

where p1(z) = z2 + ℓ1z + ℓ3 and p2(z) = γz + γℓ2.

Now two cases can be distinguised, one for σ = −1 and one for σ = 1:

Case 1 (σ = −1, corresponding to d2 < 0):

Q(z) = p1
2(z)− p2

2(z) = (p1 + p2)(p1 − p2) ⇒
Q(z) = (z2 + (ℓ1 + γ)z + (ℓ3 + γℓ2))(z

2 + (ℓ1 − γ)z + (ℓ3 − γℓ2))
(9)

Case 2 (σ = 1, corresponding to d2 > 0):

Q(z) = p1
2(z) + p2

2(z) = (p1 + ip2)(p1 − ip2) ⇒
Q(z) = (z2 + (ℓ1 + iγ)z + (ℓ3 + iγℓ2))(z

2 + (ℓ1 − iγ)z + (ℓ3 − iγℓ2))
(10)

This effectively solves the quartic equation. The quartic is factored either into two real
quadratic factors, or into two complex quadratic factors, which are conjugate to each other.
The zeros of the quadratic factors are easily determined.

In chapter 4 of Strobach’s paper, an algorithm is given for determining the elements
ℓ1, ℓ2, ℓ3, and d2 without introducing excessive numerical cancellation errors. However, this
algorithm is flawed and in practice, it is easy to find quartic equations for which his algorithm
fails. In these cases, the value of φ0 can be determined perfectly fine at high accuracy, but
determination of ℓ1, ℓ2, ℓ3, and d2 fails either completely, or excessive cancellation errors are
introduced.

The solution also does not work when d2 equals 0. A software implementation also
becomes problematic when d2 is close to 0. In the next chapter this situation is dealt with in
such a way that there is no need to exactly specify what it means for d2 to be ”close to 0”.
This situation is avoided completely by switching to another type of computation if needed.

4

3 An improved algorithm for factoring the quartic

Combining equations (3) and (6) leads to
1 A

2
(B
6
+

φ0
2
)

A
2

(2B
3
− φ0)

C
2

(B
6
+

φ0
2
) C

2
D

 =

1 ℓ1 ℓ3

ℓ1 ℓ1
2 ℓ1ℓ3

ℓ3 ℓ1ℓ3 ℓ3
2

 + d2

0 0 0

0 1 ℓ2

0 ℓ2 ℓ2
2

 (11)

From this, one easily obtains five equations for the four unknowns ℓ1, ℓ2, ℓ3, and d2.

ℓ1 =
A

2
(12)

ℓ3 =
B

6
+

φ0

2
(13)

d2 = B − 2ℓ3 − ℓ1
2 (14)

d2ℓ2 =
C

2
− ℓ1ℓ3 (15)

d2ℓ2
2 = D − ℓ3

2 (16)

The four unknowns can be expressed as functions of the known values A, B, C, D, and φ0,
by only using four of these five equations. So, we have one more equation than unknowns and
the system seems to be overdetermined. This set of equations, however, is exactly consistent
and has a unique solution. When these equations are used in a computer program, however,
it may become numerically inconsistent, due to rounding errors and cancellation errors. The
result of a naively programmed solution, based on 4 of these equations, does not need to
satisfy the fifth equation, not even approximately! So, solving this system of five equations
must be done very carefully.

In chapter 4 of his paper, Strobach takes the solution for ℓ1 and ℓ3 for granted, based on
equations (12) and (13). He then reduces the problem to solving for ℓ2 and d2, using equa-
tions (14), (15), and (16). He also needs to handle the special case of so-called bi-quadratic
equations (those are quartic equations with A = 0 and C = 0).

Strobach’s solution, however, has two major flaws. The first flaw is that Strobach always
attempts to compute ℓ2 and d2. However, there are quartics, for which it is impossible to
compute these accurately. For these quartics, d2 is close to 0, while ℓ2 is very large. For
such quartics, both quantities then cannot be computed accurately. The second flaw is that
it is not safe to use equation (13) for computing ℓ3 in all cases. If both terms have nearly
equal magnitude, but opposite sign, then in the computation of ℓ3 there is excessive loss of

5

accuracy, due to cancellation errors. The resulting factorization becomes inaccurate, while
the polynomial is well-conditioned and there really is no need to have high loss of accuracy.

Below, it is explained how these situations have to be dealt with in order to obtain good
accuracy. The first issue also is recognized by Orellana and De Michele [12] and they deal
with it in their solution, but they also do not recognize the second flaw. The algorithm in
this paper deals with both issues. The first issue is handled in a different way than it is done
by Orellana and De Michele.

3.1 A measure of accuracy in limited precision expressions

Before it is possible to describe the algorithm, for dealing with the above-mentioned issues,
it first is necessary to define a quantitative measure of the accuracy of a numerical evaluation
of a mathematical expression in a CPU with limited floating point precision. Cancellation
errors can only occur with addition and subtraction. Multiplication and division are not
exact, but the relative error is small (for n-bit precision, the relative error is less than 2-n).
For each variable an accuracy measure can be defined. Here in this paper, a variable can
be regarded as a storage unit in computer memory, in which a single numerical value with
limited precision is stored. For many modern CPU architectures, the precision is 53 bits. In
practice this means that almost 16 digits of accuracy can be maintained and computations
are done with better than 15-digit accuracy, but less than 16-digit accuracy.

The non-negative accuracy measure is defined as follows: If the lower k bits of the number
are uncertain, then the variable has accuracy measure equal to 2-k. In a CPU architecture
where numbers are stored with n bits of precision, an accuracy measure of less than 2-n

means that the number is totally meaningless, it lost all bits of precision. For such numbers
the accuracy measure can be set to 0. For example, if for a number with 53-bit precision
the accuracy measure equals 10-6, this means that it only has somewhere between 9 and 10
meaningful digits (a fully accurate 53-bit number has between 15 and 16 meaningful digits
and 6 of those digits are lost). If a number has an accuracy measure equal to 0.5, then one
bit of precision is lost, if the number has a precision measure equal to 0.125, then 3 bits of
precision are lost (which is the loss of almost one decimal digit).

The accuracy measure can be computed easily for numerical expressions. Below, the rules
are given:

� The combined result Π of multiplications or divisions of m factors f 1, f 2, . . . fm

with accuracy measures af1, af2, . . . afm has an accuracy measure aΠ equal to
min(af1, af2, ... afm).

� The combined result Σ of additions or subtractions of m terms t1, t2, . . . tm with
accuracy measures at1, at2, . . . atm has an accuracy measure aΣ equal to

|Σ|

ξ +
|t1|
at1

+
|t2|
at2

+ . . . +
|tm|
atm

,

where ξ is a very small number to avoid division-by-zero errors if all terms are equal

6

to 0. For the common ARM, x86, and Intel x86-64 architectures, a suitable value for
ξ is the smallest positive normal IEEE number, DBL MIN, which equals 2-1023.

� The accuracy measure of a real power of a number (e.g. a square root, a square, or a
cube) is equal to the accuracy measure of the number itself.

These rules allows one to have estimates of the accuracy of multistep computations with
arithmetic operations and input data of limited precision, and these rules do not depend on
the properties of a particular CPU architecture.

3.2 Computation of γ and γℓ2 of section 2.3

According to equations (9) and (10), the values of ℓ1, ℓ3, γ, and γℓ2 are needed, where γ is√
|d2|. Two different strategies can be used for that.
One strategy is to compute ℓ1, ℓ3, ℓ2, and d2 explicitly and then computing γ and the

coefficients. This is the strategy, used by Strobach. Strobachs algorithm gets into trouble,
when d2 is close to 0. In that case, there is excessive numerical cancellation error in the
calculated value of d2 and when equation (15) is used for computing ℓ2, then that value also
suffers from the same cancellation error.

Another approach is to compute ℓ1 and ℓ3 explicity, but computing γ and γℓ2 directly,
without the intermediate computation of ℓ2 and d2. If d2 is exactly 0, then ℓ2 is not defined
(infinitely large absolute value), but d2ℓ2

2 is non-zero, but finite. This follows immediately
from equation (16). One then also can see immediately that d2ℓ2 is 0, when d2 equals 0. The
product γℓ2 equals

√
|d2|·ℓ2. Depending on the sign of d2, the square of this equals either d2ℓ2

2

or −d2ℓ2
2. So, by computing d2ℓ2

2 and taking a square root, one can compute γℓ2 directly,
without the intermediate need of d2 and ℓ2. Computing γ now also is easy, without needing
d2 directly. One can compute d2ℓ2 and when this is divided by the computed value of γℓ2 one
gets either

√
|d2| or −

√
|d2|. Equations (15) and (16) can be used to compute d2ℓ2 and d2ℓ2

2.

None of the two strategies, mentioned above, works fine in all situations. It is necessary
to select one of these two strategies. In order to do so, the values ℓ1, ℓ3, d2, d2ℓ2, and d2ℓ2

2

all are computed, according to equations (12 - 16), together with the accuracy measures
of these five quantities. The quantity ℓ3 is eliminated from the accuracy measures, using
equation (13). This leads to the following accuracy measures:

7

aℓ1 = 1 (17)

aℓ3 =
|ℓ3|

ξ + |B|
6
+

|φ0|
2

(18)

ad2 =
|d2|

ξ + |2B
3
|+ |φ0|+ ℓ12

(19)

ad2l2 =
2 |d2ℓ2|

ξ + |C|+ |AB|
6

+ |Aφ0|
2

(20)

ad2l22 =
|d2ℓ22|

ξ + |D|+
(
|B|
6
+

|φ0|
2

)2 (21)

If ad2 ≥ ad2l22, then equations (12), (13), (14), and (15) are used for computing γ and γℓ2
through d2, else equations (12), (13), (16), and (15) are used for computing γ and γℓ2 through
d2ℓ2

2.
Using this strategy, the first flaw of Strobach’s algorithm is taken care of and we do not

need to handle any special cases for d2 close to 0 or equal to 0, nor do we have to decide
whether d2 is close to 0 or not. This strategy naturally selects the optimal way of computing
γ and γℓ2.

3.3 Computing the coefficients of the quadratic factors

Once the values of ℓ1, ℓ3, γ, and γℓ2 are determined, it is possible to determine the coefficients
of the quadratic factors, as given in equations (9) and (10).

In the complex case of equation (10), there is no numerical cancellation. Computation
of the coefficients of the complex coefficients is straightforward. One only needs to compute
the zeros of one of the quadratic factors. The zeros of the other quadratic factor simply are
the complex conjugates of the already determined zeros. Solving the quartic is simple in this
case.

In the real case of equation (9), the situation is more complicated. There can be consid-
erable numerical cancellation in the computation of the coefficients of the quadratic factors.
Strobach introduces four coefficients a, b, c, and d as follows:

Q(z) = (z2 + az + b)(z2 + cy + d) (22)

The coefficients a, b, c, and d depend on ℓ1, ℓ3, γ, and γℓ2, according to equation (9). They

8

can be written as

a = ℓ1 + γ (23)

b = ℓ3 + γℓ2 (24)

c = ℓ1 − γ (25)

d = ℓ3 − γℓ2 (26)

If ℓ1 and γ have close magnitudes, then either a or c suffers from large cancellation errors.
If ℓ3 and γℓ2 have close magnitudes, then either b or d suffers from large cancellation errors.

Using equations (17 - 21) and the rules of section (3.1), taking into account the choice of
using either equation (14) or equation (16) as described in section (3.2), one easily computes
the accuracy measures aa, ab, ac, and ad of the computed values a, b, c, and d.

3.4 Pairwise improvement of coefficients of the quadratic factors

Both pairs {a, c} and {b, d} have a high-magnitude value and a low-magnitude value.
The low-magnitude value suffers most from numerical cancellation errors. One step in the
improvement of the coefficients is to recompute the low-magnitude value for both pairs from
the high-magnitude value. In order to do so, equation (22) is used to get relations between
a, b, c, d and A, B, C, D:

A = a+ c (27)

B = ac+ b+ d (28)

C = bc+ ad (29)

D = bd (30)

For the pair {b, d}, Strobach uses equation (30) as follows: if |b| > |d|, then replace d by D/b,
else replace b by D/d. This strategy also is used here. Besides replacing the coefficient with
lowest magnitude, one also has to replace the associated accuracy measure! That accuracy
measure is used in further steps of the algorithm. So, if |b| > |d|, then one also has to replace
ad by ab, else one also has to replace ab by ad. After this operation, the replaced coefficient
has the same accuracy measure as the high-magnitude coefficient.

For the pair {a, c}, Strobach uses a more involved mechanism (see [5], section 5). Here,
a different strategy is used for a and c, again based on selection of the expression with the
best accuracy measure. This strategy is simpler than Strobach’s strategy and tests show
that it works remarkably well. The three equations (27), (28), and (29) are used.

Case 1, |a| > |c|: compute three possible values of c:

c(1) = A− a, c(2) =
B − b− d

a
=

B − 2ℓ3
a

, c(3) =
C − ad

b

9

and the associated accuracy measures

ac
(1) =

|c(1)|
|A|+ |a|

aa

, ac
(2) = min

(
|c(2)|

ξ + |B|+ |2ℓ3|
aℓ3

, aa

)
, ac

(3) = min

(
|c(3)|

ξ + |C|+ |ad|
min(aa,ad)

, ab

)

and then select the computed value for c, which has the highest accuracy measure, and re-
place ac by the highest accuracy measure.

Case 2, |a| < |c|: compute three possible values of a:

a(1) = A− c, a(2) =
B − b− d

c
=

B − 2ℓ3
c

, a(3) =
C − bc

d

and the associated accuracy measures

aa
(1) =

|a(1)|
|A|+ |c|

ac

, aa
(2) = min

(
|a(2)|

ξ + |B|+ |2ℓ3|
aℓ3

, ac

)
, aa

(3) = min

(
|a(3)|

ξ + |C|+ |bc|
min(ab,ac)

, ad

)

and then select the computed value for a, which has the highest accuracy measure, and
replace aa by the highest accuracy measure.

3.5 Simultaneous recomputation of one pair of coefficients

After the steps, described in the previous section, there still may be issues in the computed
coefficients b and d. The computed value of ℓ3 as given in equation (13) may suffer from
extreme cancellation and then the accuracy measure aℓ3, as given in equation (18) is close to
0. Strobach did not recognize this issue, see [5]. This issue also is not recognized by Orellana
et al., see [12]. In both papers, the computed value of ℓ3 is taken for granted.

In the real case, in the expression for b and d it may be that ℓ3 is the dominant term,
while its accuracy measure is very close to 0. This results in an overall highly inaccurate
computation of b and d. Even the improvement of the previous section cannot improve the
quality of these coefficients. That improvement only assures that the accuracy measures of
b and d equal max(ab, ad), but if the best accuracy measure still is bad, then both are bad.
Only the product of b and d is accurate, due to the use of equation (30), but the individ-
ual coefficients still can be off quite a lot. In order to resolve this issue, the pair {b, d} is
computed from the pair {a, c} if the accuracy measure of b and d is less than min(aa, ac).
In order to do so, equations (29) and (30) are combined to create a quadratic equation in
either b, or d, the other coefficient then is computed from equation (30), without any loss of
accuracy.

Initial elimination of d from equations (29) and (30) leads to the following quadratic equation,
and from that solution, using equation (30), d can simply be computed:

c b2 − Cb+ aD = 0 , d =
D

b
(31)

10

Initial elimination of b from equations (29) and (30) leads to the following quadratic equation,
and from that solution, using equation (30), b can simply be computed:

a d 2 − Cd+ cD = 0 , b =
D

d
(32)

Both pairs of equations have two solutions for the pair {b, d}. One solution is the correct
solution, the other solution is a spurious one, introduced by the fact that equation (28) is
not taken into account. Only one of the two solutions satisfies equation (28).

For the pair of equations (31), the two solutions for the pair {b, d} are

b =
C ±

√
C 2 − 4acD

2c
, d =

2cD

C ±
√
C 2 − 4acD

=
C ∓

√
C 2 − 4acD

2a
(33)

For the pair of equations (32), the two solutions for the pair {b, d} are

d =
C ±

√
C 2 − 4acD

2a
, b =

2aD

C ±
√
C 2 − 4acD

=
C ∓

√
C 2 − 4acD

2c
(34)

If C > 0, then the solution with + in front of the square root is the most accurate. If C < 0,
then the solution with − in front of the square root is the most accurate. If C = 0, then
it does not matter. If for both pairs of equations (31) and (32) the solution is taken with
the highest accuracy, then one can see from (33) and (34), that one of them is the desired
solution, and the other one is the spurious solution. It is not possible in advance to tell,
which one is the desired solution. So, the strategy is to compute pairs {b, d} from (31) and
from (32), and plugging both pairs in equation (28) and only use the pair, which satisfies
(28) best. Before replacing the original pair {b, d}, one, however, should still check the
accuracy measure of the values computed, according to the most accurate solution-pair of
(33) and (34). If the accuracy is too low, then the original value of the pair {b, d} should be
maintained.

The total strategy for possible recomputation of {b, d} is summarized below:

First compute the discriminant ∆ and its accuracy measure:

∆ = C 2 − 4acD , a∆ =
∆

ξ + C 2 + |4acD|
min(aa,ac)

After this initial computation, there are two possible cases:

11

Case 1, |C| ≥ 0: compute the following pairs and the numerator accuracy:

b(1) =
C +

√
∆

2c
, d (1) =

D

b(1)

d (2) =
C +

√
∆

2a
, b(2) =

D

d(2)

anum =
C +

√
∆

ξ + C +
√
∆

a∆

Case 2, |C| < 0: compute the following pairs and the numerator accuracy:

b(1) =
C −

√
∆

2c
, d (1) =

D

b(1)

d (2) =
C −

√
∆

2a
, b(2) =

D

d(2)

anum =
−C +

√
∆

ξ − C +
√
∆

a∆

If anum < min(ab, ad), then do not replace the pair {b, d} and discard the computed pairs
{b(1), d (1)} and {b(2), d (2)}, else perform the next step, given below.

Compute the error ϵ (1) = |B − ac− b(1) − d (1)| and the error ϵ (2) = |B − ac− b(2) − d (2)|. If
ϵ (1) < ϵ (2) then replace {b, d} with {b(1), d (1)}, otherwise replace {b, d} with {b(2), d (2)}.

Mathematically, in the above steps, the value of ∆ = C2 − 4acD is non-negative, but in
a computer implementation, this value may become negative (a very small value, just below
zero, due to numerical rounding noise). In a practical implementation, such a tiny negative
value should be regarded as being 0.

3.6 Final step: determining the roots of the quadratic factors

The above steps assure the accurate computation of the coefficients of equation (9), and the
quadratic factors now can be further factorized to get the roots of the quartic. As a final
step, one could use some iterative method to polish the computed coefficients further, as is
done by Orellana and De Michelle (see [12], section 2.3), but tests revealed that this hardly
is necessary. Polishing also introduces the risk of iterations being sent off to far away values
and special precautions need to be taken to detect such catastrophic failures. The polishing

12

step adds a fairly high percentage of total computational cost to the algorithm, while the
added accuracy is questionable. The algorithm, presented above, reaches a total relative
accuracy of well over 14 digits (total relative accuracy will be defined rigorously below) on
an Intel x86-64 CPU with standard IEEE 53 bits arithmetic, without any polishing.

So, the coefficients of the quadratic factors are used as is, and the problem of solving
the quartic now is reduced to the problem of solving two monic quadratic equations. The
solution of the quadratic equation z2 + az + b = 0 can b written as z1,2 = −1

2
a± 1

2

√
a2 − 4b.

If a2−4b < 0, then the situation is simple. In that case, there are two complex conjugate
roots. One can compute the real part −1

2
a and the imaginary part 1

2
i
√
4b− a2 separately,

without having to deal with numerical cancellation errors. From these two values, both
complex conjugate roots can be constructed.

If a2 − 4b ≥ 0, then there can be numerical cancellation. In that case there are two real
solutions. One of these real solutions is computed by selecting the most accurate solution
as follows: if a < 0, then the solution z1 = −1

2
a + 1

2

√
a2 − 4b is selected, else the solution

z1 = −1
2
a− 1

2

√
a2 − 4b is selected. The other real solution is computed as z2 = b/z1.

13

4 Software implementation and test suite

For testing purposes, an extensive test suite is developed, which can be used to generate poly-
nomials, based on known (possibly randomly generated) roots, and generated at quadruple
precision to be sure that the computation of coefficients from a given set of roots does not
introduce irreversible significant loss of accuracy. Also a hand-selected set of polynomials is
used to emphasize on specific ”difficult” configurations of roots. Below follows a list of all
software components, used in testing the algorithm:

MR An implementation of the well-established algorithm by K. Madsen and J.K. Reid,
see [8]. This algorithm was ported from Fortran to Java. The Java version was used
already for several years in several different applications without any issues and its
output was thoroughly compared with the original Fortran code. This is used as a
reference, because it is one of the most accurate general purpose polynomial root finders
currently available for standard limited precision CPU architectures, which also has a
good performance in terms of computational speed.

STR The original implementation, provided by Strobach, in Fortran90. This software is
used to show that certain quartics are not handled correctly by the original algorithm
of Strobach. Inspection of the code of this algorithm shows that it exactly implements
the described algorithm of [5], so the issues really are in the algorithm and not in this
particular Fortran-implementation.

WOE The implementation of the improved algorithm. This is written in Java and in C.
The performance tests are done in Java in order to have a honest comparison with the
MR algorithm. Functionally, there is no difference between the C code and the Java
code, both produce exactly the same results, up to the last bit of accuracy.

QRT A suite of hand-selected quartics to test some ”difficult” configurations of roots. All
polynomials, tested by Orellana and De Michele [12] are included in this set. Besides
that, some additional polynomials are added to this set. The individual polynomials
are given further below, in the discussion of the results.

TST A test suite, which can be used to generate polynomials and which has the following
features:

� Generation of polynomials from a given factor and a given set of roots, which can
be real or conjugate complex pairs.

� Generation of polynomials from a given set of coefficients.

� Random generation of large numbers of polynomials, either based on generated
roots, or based on generated coefficients. Distributions of roots or coefficients can
be selected and roots can also be discretized to increase the chance of generation
of multiple roots.

� Automated checking of accuracy, based on given roots and computed roots.

14

� Generation of polynomials is done with 106-bit quadruple precision. All given
roots, factors, or coefficients are provided with 106-bit precision, and all compu-
tations in order to obtain the final set of coefficients also are done with 106-bit
precision. These quadruple precision coefficients are converted to standard 53-bit
double precision, before they are passed to the solver to be tested.

Two types of tests are performed. One type of tests is solving hand-selected quartics and
comparing the results with the known values and with the results of other solvers. The other
type of tests is to generate large numbers of randomly generated quartics with certain prop-
erties and comparing the computed roots with the generated roots, leading to an observed
error for each computed root. The errors in turn are compared to a theoretical attainable
error bound. The next section defines how the error bound is computed.

4.1 Maximum attainable numerical accuracy of a single root

How well can the roots of a polynomial be determined in a computer with limited precision,
even when the applied root-finding method is perfect? The floating point precision leads to
an absolute bound on the accuracy of the roots.

The analysis, given here, is for general polynomials over C. Assume that z0 is a root of
multiplicity 1 of the nth degree polynomial

P (z) =
n∑

k=0

pk z
k . (35)

Now assume that the jth coefficient pj is varied. It is straightforward to compute the sensi-
tivity of the root z0, relative to variation in pj.

Using P (z0) = 0, one can write

pj = −
n∑

k=0, k ̸=j

pk z
k−j . (36)

Using the fact that (k − j) equals zero when k = j, taking the derivative, with respect to z,
leads to

∂pj
∂z

= −
n∑

k=0, k ̸=j

(k − j) pk z
k−j−1 = −

n∑
k=0

(k − j) pk z
k−j−1 . (37)

By factoring out the factor z−j one gets a nice and simple result:

∂pj
∂z

= −z−j

n∑
k=0

(k − j) pk z
k−1 = −z−j(P ′(z)− jP (z)) . (38)

At the single root z = z0, the polynomial P (z) equals 0, but the derivative P ′(z) is non-zero:

∂pj
∂z

∣∣∣∣
z=z0

= −z−j
0 P ′(z0) . (39)

15

Taking the reciprocal gives the sensitivity of the root z0, relative to changes in the jth

coefficient:
∂z0
∂pj

= − z j
0

P ′(z0)
. (40)

If the CPU precision is limited, due to the presence of a relative error, not greater than ϵcpu,
then the absolute error in the coefficient pj is bounded by ϵcpu |pj|. From equation (40), it
follows that the contribution Ez0,j to the total upper bound Ez0 for the absolute error in the
root z0, due to uncertainty in the coefficient pj, can be written as:

Ez0,j = ϵcpu
|pjz j

0 |
|P ′(z0)|

(41)

If all contributions for all coefficients p0 up to and including pn to the total upper bound Ez0

are combined into a single upper bound, then a simple expression is obtained, which easily
can be evaluated:

Ez0 =
n∑

k=0

Ez0,k =
n∑

k=0

(
ϵcpu

|pkz k
0 |

|P ′(z0)|

)
=

ϵcpu
|P ′(z0)|

n∑
k=0

|pkz k
0 | (42)

For a root z0 ̸= 0, the relative error ϵz0 is bounded by

ϵz0 =
ϵcpu

|z0 P ′(z0)|

n∑
k=0

|pkz k
0 | (43)

Using equation (43), it is simple to determine error bounds for all simple roots of the poly-
nomial equation. Any polynomial root solver, which produces relative errors in the roots,
less than or equal to the bound given by equation (43), has done a perfect job.

4.2 Maximum attainable numerical accuracy of a multiple root

In a CPU architecture with limited floating point precision, there is a limit on the relative
separation of two roots, which can with certainty be distinguished from a double root.
Imagine that a polynomial equation has two very close roots z1 and z2 with upper absolute
error bounds Ez1 and Ez2, according to equation (42). If |z1 − z2| < Ez1 + Ez2, then the
polynomial might as well have a double root at 1

2
z1 +

1
2
z2. It is not possible to distinguish

between the double root and the two very close single roots! In general a cluster of m very
close roots cannot be distinguished from a root of multiplicity m, equal to the mean value
of all separate roots. Detecting a cluster of roots is easy. Around each of the m roots zc,
1 ≤ c ≤ m, there is a disk of uncertainty |z − zc| ≤ Ezc. If the union of these disks forms a
single connected set in the complex plane, then the associated roots form a cluster of roots,
which best can be treated as a multiple root.

The error bound, given above, does not hold for multiple roots. If the root z0 is a root
of multiplicity m > 1, then all derivatives up to and including the (m−1)th derivate are

16

equal to 0. The analysis of the previous section, however, can be applied perfectly fine to
the (m−1)th derivative of P (z). For the latter polynomial, the root z0 has multiplicity equal
to 1. For very tight clusters of roots (which can easily be detected, see above), the (m−1)th

derivative of P (z) has a single root, equal to the average of all roots in the cluster. So, if
the analysis of the previous section is performed on the (m−1)th derivative of P (z), then
the error bound, according to equation (42), is on the mean value of the m very close roots
and not on the individual roots, and it is computed with P (z) subsituted by the (m−1)th

derivative of P (z).
Bounds for the roots themselves also can be computed. A similar, but somewhat more

involved derivation like the one given above, can be made for roots of general multiplicity
m, see [13], section 7.4:

Ez0 =

m

√√√√√ϵcpu
n∑

k=0

|pkz k
0 |

|P (m)(z0)|/m!
(44)

All m (possibly separate, but close) roots are in the disk of uncertainty |z−z0| ≤ Ez0, where
P (m)(z) is the mth derivative of P (z). For m = 1, this again gives the result of equation (42).

Summarizing, for the estimates of multiple roots, which usually will be separate, but very
close numbers, it is checked that all estimates are in a disk around the true multiple root,
according to equation (44).

4.3 The error factor of a polynomial for a software solver

For each of the roots z1, z2, . . . zn of an nth degree polynomial P(z) one can define a ratio
F1, F2, . . . FN as follows:

Fi =
|zi − ẑi|
Ezi

(1 ≤ i ≤ n), (45)

where Ezi is the error bound for root zi, according to (42) or (44), and ẑi is the approximation
of the root zi, computed by the software for solving equations. The error factor for the
polynomial P for a certain software solver can be defined as

F = max(F1, F2, ...Fn) (46)

For an ideal piece of software, F ≤ 1. Such a piece of software has errors in all computed
roots, at most equal to the theoretical error bound. For testing the quartic equation solver,
the error factor F is used as a measure for the performance of the algorithm.

4.4 Testing the quartic root solver

Testing of the quartic root solver is done in different ways.

� Generate a set of 109 random quartics. For each of the quartics, randomly select 4
roots z1, z2, z3, and z4, according to some random distribution, described below in

17

the section on the test results. Also generate a random factor f and compute the five
coefficients of the quartic f ·(z− z1)(z− z2)(z− z3)(z− z4). Do all these computations
in 106 bit precision.

� For each of the generated quartics, convert the coefficients to 53-bit standard precision
by rounding. Use the quartic solver, as described in this paper on the rounded quartics.
Also use the MR-solver on the rounded quartics.

� Compute the error factor F , according to equation (46), from the difference between
the generated (given) roots, and the roots computed by the solver from the given 53-bit
coefficients of the quartic. Also compute the error factor for the MR-solver.

� Also keep track of the time, needed by the solver to solve all quartics. The test code is
written in such a way, that the time needed for generation of the quartics, and all post-
processing and comparisons of the solutions, is not taken into account in the timing.
Hence, all quartics first are generated and stored in memory, then they are solved in
a tight loop and the computed roots are stored for each quartic, and finally, for each
quartic, the computed roots are compared with the generated roots. The same setup
also is used for the MR-solver.

� Besides using the quartics with discretized roots, similar tests are done with roots,
which are not discretized. This leads to somewhat more random roots, with much
fewer double roots, but more very close roots. The same random distributions are
used again.

� Besides using the above-mentioned randomly generated quartics, also a suite of hand-
selected quartics is used for testing the solver. The quartics in this suite are selected on
the basis of their perceived difficult properties, such as tight clusters of roots, multiple
roots, high dynamic range of roots.

� The original Fortran code from Strobach is used to show that some quartics are not
solved correctly and it is shown where his algorithm fails and how these situations are
taken care of in the algorithm, presented in this paper.

18

5 Result of tests

Here, results of tests of the solver are presented. First, several sets of random quartics are
described in more detail and it is explained what accuracy can be obtained for solving these
quartics, and next, the results of a suite of hand-selected quartics is presented.

5.1 Result with large numbers of randomly generated quartics

In this test, random quartics are generated, with different distributions of roots. For each
distribution, one set of 109 quartics is generated. In all sets, the generated equations either
have 0 complex roots, 2 complex roots, or 4 complex roots, each of these configurations having
a probability of 1

3
. Complex roots come in conjugate pairs. In each set, roots are generated,

according to one of the random distributions, described below. After generating the roots,
both the real and imaginary part are rounded to the nearest multiple of 0.001, before the
coefficients of the polynomial are computed. This increases the chance of generating double
roots. For the used distributions, the chance of an exact double root is appr. 1 out of 10000
for each pair of real roots. Summarizing, the following distributions are used:

� Random roots, uniformly distributed on the circle |z| = 5, or on the real axis with
−5 ≤ ℜ(z) ≤ 5.

� Uniformly distributed random roots inside or on a square with −5 ≤ ℜ(z) ≤ 5, and
−5 ≤ ℑ(z) ≤ 5, or real roots with −5 ≤ ℜ(z) ≤ 5.

� Random roots, uniformly distributed on the imaginary axis with −5 ≤ ℑ(z) ≤ 5, or
on the real axis with −5 ≤ ℜ(z) ≤ 5.

� Roots, which are generated, according to the second distribution (inside or on a square),
but after generation and rounding, they are multiplied by a factor 10n, with n an integer
value uniformly randomly selected from the set {-20, -19,, 19, 20}. This assures
that quartics are generated with roots in a wide dynamic range.

For each of the generated quartics the error factor F is computed for a machine precision
ϵcpu = 2 · 10−16, according to equation (46). The plot below shows a graph for all four
distributions, described above, with the number of quartics having an error factor F, larger
than a threshold value factor FT. This plot shows that appr. 80% to 90% of all generated
quartics have an error factor less than 1, depending on the distribution of the roots. Even
more important, though, is that the error factor is less than 10 for all quartics, and hence
never more than 1 digit of precision is lost, relative to the theoretically attainable accuracy.

A similar test was repeated, but now without rounding to the nearest multiple of 0.001.
This test shows similar results, with only a very low fraction of quartics with loss of just
over 1 digit of accuracy, relative to the theoretically attainable accuracy.

19

0.01 0.1 1 10 100
1

10

100

1K

10K

100K

1M

10M

100M

1G

threshold FT (for eps = 2e-16)

q
u
ar

ti
cs

 w
it

h
 e

rr
o

r
fa

ct
o

r
la

rg
er

 t
h

an
 F

T uniform on circle

uniform in square

imaginary or real

high dynamic range

0.01 0.1 1 10 100
1

10

100

1K

10K

100K

1M

10M

100M

1G

threshold FT (for eps = 2e-16)

q
u
ar

ti
cs

 w
it

h
 e

rr
o

r
fa

ct
o

r
la

rg
er

 t
h

an
 F

T uniform on circle

uniform in square

imaginary or real

high dynamic range

20

The solver has no issues with multiple roots. Roots with multiplicity m have a number
of correct digits, which is roughly 1

m
th part of the number of correct digits of single roots.

Sometimes the number of correct digits is much larger for double or triple roots, but this
only happens when the roots have nice ”round” values, like 1, or 1000. Such numbers can be
represented exactly and also products of four of such numbers still can be represented exactly
and that leads to exact results. This also is observed in the manually selected quartics, given
in the next section. When the roots are replaced by values like 1.0001234, then this effect is
lost.

5.2 Result with suite of hand-selected quartics

The quartics, used in this test are tabulated, together with why the quartic was selected and
what result is obtained. The table can be found on the next page. The quartics are based
on those, used by Orellana et al., see [12], at the top of section 3. For some quartics, with
multiple roots, Orellana et al. report unrealistically good results. In order to assure that
these good results are not due to a lucky effect of exact representation of numbers with few
digits, slightly modified values were used in the test suite, given below. The quartics, which
were made less ”round” are the ones in cases 14, 15, 20, and 21.

The result of the tests with these hand-selected quartics is very well. All of these quartics
have errors, well within the theoretical bounds of equations (42) and (44). All single roots
have relative errors less than 10−15, except the ones of cases 2, 11, and 17. These roots are
very close and hence are ill conditioned. The roots of case 2 all have a relative error less
than 10−6. The roots of case 11 have a relative error of appr. 3.5 ·10−13, and the roots of
case 17 have errors of appr. 2.5·10−7. All these errors are well within the theoretical bound
of equation (42).

Double roots have accuracies of 7 to 8 digits, and even the quadruple root of case 14 has
almost 8 correct digits. According to the theoretical bounds this should be much lower (only
appr. 4 digits). Most likely, there still is the effect of lucky rounding. The triple root of case
15 has a little over 5 digits of accuracy, and this is close to the theoretical bound of equation
(44).

5.3 Comparison with Strobach solver and Orellana solver

The solver, presented in this paper, does not use polishing of solutions or polishing of
quadratic factors after the analytic computation, based on the LDLT decomposition. Both
Strobach [5] and Orellana et al. [12] use polishing after the analytic steps. Polishing, as
presented by Orellana et al. can also be added to the algorithm, presented here, but it is not
needed. The solver loses at most just over 1 digit of accuracy in some unlucky cases. The
possible slight improvement is not worth the computational cost and the added complexity
of the code and there even is the risk that the polishing adds new unforeseen numerical
problems. Strobach’s solver fails for several quartics, and Orellana’s solver has inaccurate
results for several quartics (sometimes loss of more than 10 digits), which needs repairing by
means of polishing, using Newton iterations.

21

case roots reason

1 109, 106, 103, 1 large dynamic range

2 2.003, 2.002, 2.001, 2 very close real roots

3 1053, 1050, 1049, 1047 Large real values

4 1014, 2, 1, -1 One large, three small roots

5 2·107, 107, 1, -1 Two large real, two small real

6 107, −106, 1± i Two large real, two small complex

7 −7, −4, −106 ± 105i Two small real, two large complex

8 108, 11, 103 ± i Large dynamic range, real and complex

9 107 ± 106i, 1± 2i Two large, two small complex

10 104 ± 3i, −7± 103i Four complex, mixed magnitude

11 1.001± 4.998i, 1± 5.001i Two clusters of close complex roots

12 103 ± 3i, 103 ± i Cluster of four fairly close roots

13 2± 104i, 1± 103i Four complex, small real, large imag.

14 1000.1234, 1000.1234, 1000.1234, 1000.1234 Four equal roots

15 1000.1234, 1000.1234, 1000.1234, 10−15 Three equal roots plus small root

16 1± 0.1i, 1016 ± 107i Four complex, large dynamic range

17 10000, 10001, 10010, 10100 Four nearly equal real roots

18 40000± 300i, 30000± 7000i Four complex, moderately large

19 1044, 1030, 1030, 1 Huge dynamic range and double root

20
1.0001234·1014, 1.0001234·107,
1.0001234·107, 1.0001234

Large dynamic range and double root

21
1.0001234·1015,
1.0001234·107, 1.0001234·107, 1.0001234

Large dynamic range and double root

22 10154, 10152, 10, 1 Dynamic range , max. representable

case quartic coefficients reason

23 a = 1, b = 1, c = 3
8
, d = 10−3 d2 close to zero

24
a = −

(
1 + 1

S

)
, b = 1

S
− S2,

c = S2 + S, d = −S with S = 1030
Widely spaced coefficients

22

5.4 Performance in terms of computational speed

The performance of the solver in terms of computational speed, presented in this paper, is
comparable to the performance of Strobach’s solver or the solver of Orellana et al. This
also was expected, because all three algorithms are based on the same underlying principle
and are quite similar. Compared to an efficient implementation of the general polynomial
solver, based on the Madsen and Reid algorithm, see [8], the three solvers are much faster,
a speedup factor of 5 is achievable without problems.

With careful optimization, and tuning compiler or JVM-settings, probably a little more
speedup can be achieved, but in this work, this was not further pursued. A standard JVM
(Oracle Hotspot, Java Runtime Environment 11.0.10) was used, out of the box, without any
tweaking of parameters.

5.5 Possible improvements and optimizations

Tests were performed with Orellana’s algorithm (see [12], section 2.2) for computing the
solutions of the depressed cubic equation (4). This algorithm looks attractive, because of
its great simplicity, but this gave less satisfactory results in terms of accuracy. Strobach’s
algorithm, using so-called ’bi-iterations’, see [5], section 3.1, performs exceptionally well in
terms of accuracy, while still being reasonably fast. Tests with billions of randomly generated
depressed cubics with many different distributions of g and h show that the relative error
never exceeds 10−15 on a machine with ϵCPU = 2·10−16. Using the algorithm, presented in
[12], but without the Newton steps at the end, only leads to a modest speedup of 10% to
20% of the total time for solving a quartic, but at the cost of severely increased errors and
the need to polish solutions afterwards. So, it was decided to stick to Strobach’s algorithm
for solving the depressed cubic equation (4).

Most modern CPU’s have a so-called fused multiply and add instruction (FMA), which
computes a∗b+c for any given floating point numbers a, b, and c, using exact arithmetic for
the complete computation and only rounding at the end of the computation. Standard arith-
metic has rounding after computing a∗ b and again after adding c. Using FMA-instructions,
there may be some additional accuracy, and it also may make the code slightly faster, but no
spectacular improvements should be expected. Using of FMA-instructions does not intro-
duce the risk of unforeseen numerical issues and may be a more fruitful direction of research
than using polishing of roots at the end of the algorithm.

5.6 Conclusions

A nice basis had been laid by Strobach with the introduction of the LDLT quartic solver.
With the addition of runtime accuracy analysis, a really accurate solver is obtained, which
is nearly as fast as the currently available analytical solvers and at the same time has an
accuracy very close to the theoretically attainable accuracy, also in all kinds of corner cases,
where many other solvers have a hard time getting good results. Probably, there is no
other quartic equation solver, which can beat the one, presented in this paper. This is
demonstrated by the accompanying code and the extensive test suite, which addresses all
known identified corner cases.

23

References

[1] H. E. Salzer, “A note on the solution of quartic equations,” Math. Comput., vol. 14,
no. 71, pp. 279–281, 1960.

[2] N. Flocke, “Algorithm 954: An accurate and efficient cubic and quartic equation solver
for physical applications,” ACM Trans. Math. Softw., vol. 41, pp. 30:1–30:24, 2015.

[3] S. L. Shmakov, “A universal method of solving quartic equations,” Int. J. Pure Appl.
Math., vol. 71, no. 2, pp. 251–259, 2011.

[4] P. Strobach, “The fast quartic solver,” J. Comput. Appl. Math., vol. 234, no. 10,
pp. 3007–3024, 2010.

[5] P. Strobach, “The low-rank ldlt quartic solver,” Internal Technical Report, pp. 1–
26, 2015. AST-Consulting Inc., Bahnsteig 6, 94133 Röhrnbach, Germany (www.ast-
consulting.net), https://doi.org/10.13140/2.1.3955.7440.

[6] M. D. Yacoub and G. Fraidenraich, “A solution to the quartic equation,” Math. Gaz.,
vol. 96, no. 536, pp. 271–275, 2012.

[7] M. A. Jenkins and J. F. Traub, “A three-stage algorithm for real polynomials using
quadratic iteration,” SIAM J. Numer. Anal., vol. 7, no. 4, pp. 545–566, 1970.

[8] K. Madsen and J. K. Reid, Fortran subroutines for finding polynomial zeros, Report HL
75/1172(C13). Computer Science and Systems Divisions, A.E.R.E Harwell, Oxfordshire,
feb 1975.

[9] D. A. Bini and G. Fiorentino, “Design, analysis, and implementation of a multiprecision
polynomial rootfinder,” Numer. Algorithms, vol. 23, pp. 127–173, jun 2000.

[10] R. Descartes, On the construction of solid and supersolid problems, vol. III. Dover, 1954
[1637]. ISBN 0-486-60068-8, JFM 51.0020.07.

[11] L. Euler, Of a new method of resolving equations of the fourth degree. Springer-Verlag,
1984 [1765]. Elements of Algebra, ISBN 978-1-4613-8511-0, Zbl 0557.01014.

[12] A. G. Orellana and C. de Michele, “Algorithm 1010: Boosting efficiency in solving
quartic equations with no compromise in accuracy,” ACM Trans. Math. Softw., vol. 46,
no. 2, 2020. Article 20 (May 2020), https://doi.org/10.1145/3386241.

[13] J. H. Wilkinson, The algebraic eigenvalue problem. Clarendon Press, 1965. Oxford.

24

