THE LOW-RANK LDLT QUARTIC SOLVER

PETER STROBACH*

Abstract. A quartic equation Q(z) = z* + Az3 + B22 + Cz + D with real coefficients A, B, C, D
can be posed as a constrained quadratic form Q(z) = z7 Q(p)z, where z = [22,2,1]7 and Q(yp) is
a 3 X 3 real symmetric matrix with antidiagonal shift p. The ¢ parameter can be tuned to ¢ = o
for generating a rank-drop to rank{Q(ypo)} = 2. The coefficient vectors [1,a,b]T and [1,¢,d]T of
the quadratic factorization Q(z) = (22 + az + b)(22 + cz + d) are then easily computed from the
rank-2 LDLT factors of Q(yo). This scheme is entirely based on simple and well-conditioned closed-
form calculations for the LDLT factors. The necessary shift parameter @g is computed reliably and
accurately as the dominant root of a depressed cubic. We show results of demanding tests. A Fortran
subroutine implementation of the new algorithm is released along with the paper.

Key words. Quartic equation, Polynomial root finding, Polynomial factorization, LDLT fac-
torization, rank reduction.

1. Introduction. The quartic
(1.1) Qz)=2"+ A2+ B2 +C2+ D
is the highest degree polynomial for which a linear factorization

(1.2) Q(2) = (2 = 21)(z — 22)(2 — 23)(2 — 24)

can be found by closed-form calculations [1]. The parameters {z1, 22, 23, 24} are also
called the roots of Q(z). Applications of quartics typically occur in large nonlinear
problems which are reduced to schemes of solving very many small local optimization
problems with locally optimal parameters appearing as the roots of a degree-4 poly-
nomial. Other examples can be found in computer graphics [2], for example when
computing the intersection of two conic sections [3], or in calculations with ellipses,
their intersections and overlap areas [4].

In these applications, it is important that a quartic solver is fast, reliable and
sufficiently accurate numerically. The classical closed-form solution by the method of
radicals [5], [6] is the fastest, but also the most inaccurate among all possible choices.
One can easily find examples in which the classical closed-form quartic solver breaks
down. For this reason, the classical closed-form quartic solver is a rather unreliable
tool, even when used only as an initial root estimator followed by some refinement,
as proposed in [7].

The only way out of this difficulty is a completely new theory for solving quartic
equations by quasi closed-form calculations without the drawbacks of the classical
solution. This theory is developed in this paper and it is based on a low-rank LDLT
representation of a quartic function. We exploit the fact that there exists a direct
relationship between the LDL” factors of a characteristic matrix that describes the
quartic, and the parameters {a, b, ¢, d} of its quadratic factorization

(1.3) Q(z) = (2 +az+b)(22 + cz + d)

The above quadratics are then easily divided in their linear factors and the problem
is solved. A special situation occurs in the presence of two complex conjugate factors

*AST-Consulting Inc., Bahnsteig 6, 94133 Rohrnbach, Germany (www.AST-Consulting.net,
peter_strobach@gmx.de).

https://www.researchgate.net/publication/243106540_Beweis_der_Unmoglichkeit_Algebraische_Gleichungen_von_Hoheren_Graden_als_Dem_Vierten_Allgemein_Aufzulosen?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/285056550_Solving_Quartics_and_Cubics_for_Graphics?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/260908490_Computer_Graphics_Principles_and_Practice_in_C?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/51912257_Calculating_Ellipse_Overlap_Areas?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/220389858_The_fast_quartic_solver?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==

2 P. STROBACH

z3 = 2] and z4 = z5. In this case, it is less well-known that besides the real factor-
ization (1.3) there exists the option of factoring the quartic in the complex domain
according to:

Q(z) = (2 — 21)(z — 22) (2 — 27)(z — 23)

(1.4) = (P +az+b) (> +a*z+0b")
where

(1.5) a=—(z1+2) ,

(].6) b= Z1%22

In our algorithm, we use both real (1.3) and complex (1.4) type factorizations.

This paper is organized as follows. Section 2 presents an overview of the new
low-rank LDL™T quartic solver. Section 3 is devoted to the computation of the shift
parameter (g as a central step in this algorithm. Section 4 explains how the LDL”
parameters are practically computed. Section 5 discusses the computation of the
quartic roots from the quadratic factors. Section 6 presents a number of interesting
experimental results. In Section 7, we establish our conclusions.

2. Algorithm Overview. It is not difficult to verify that the quartic of (1.1)
can be posed in terms of the following quadratic form

2

(2.1) Qz) =[2* 2 1] Q(y) i ;
where
L4 (B3
22) Qo) =| 4 (-9 ¢
B+5) § D

The key feature here is that we can introduce a free variable factor ¢, also called the
antidiagonal shift without affecting Q(z) because the powers of z are constant along
antidiagonals and the ¢ cancels out perfectly in the antidiagonal trace.

It is easily seen that the determinant of Q(y) must be a cubic in ¢. Moreover,
it turns out that there exists a degree of freedom in “distributing” portions of B
along the main antidiagonal in any desired fashion, provided only that these portions
of B sum up to the full B along the antidiagonal and that these portions preserve
the symmetry of Q(y). We exploit this additional degree of freedom and construct
the special form of Q(y) as shown in (2.2) so that the corresponding characteristic
polynomial Q(¢) becomes a depressed cubic in :

(2.3) Qo) =¢*+go+h

with coefficients g and h, where

2
(2.4) g:AC—4D—% :

2
(2.5) h = (8D+AC—%>§—CQ—DA2

The Low-Rank LDLT Quartic Solver 3

Any ¢ that satisfies Q(¢) = 0 also satisfies det{Q(p)} = 0. In cases where the
depressed cubic of (2.3) has three real roots, one of these roots will be especially well
suited for our purposes. This is called the dominant root pg. In Section 3, we give an
exact definition of a dominant root and introduce a particularly attractive algorithm
for its computation in presence of a depressed cubic. This algorithm is a central
element in our method and is the deeper reason why we wanted the characteristic
cubic precisely in depressed form.

For the moment, we can assume that the necessary antidiagonal shift oy has been
safely and accurately computed. Then the Q(pg) is of rank 2 and we can parametrize
this matrix exactly in terms of its rank-2 LDLT factors as follows:

1
1 1 /1 43
(2.6) Q(po)=1| ¢, 1
do 1 /s
ls Ao

In simple thinking it is now easy to relate the parameters {1, /s, /3 and dy to the
elements of Q(¢o). However, in Section 4 we learn that some deeper considerations
must be made for handling roundoff errors in an optimal fashion. For the moment,
it is sufficient to assume that these parameters of the low-rank LDLT representation
can be well computed.

Now we can turn to the main issue of constructing the two quadratic factors
or subpolynomials of a given quartic from the parameters of this low-rank LDL”
representation. For this purpose, we determine the sign of ds:

(2.7) o = sign{ds} = £1 (either +1 or —1)
and introduce a square-root parameter v as follows:

(2.8) v=\ody .

The characteristic matrix Q(yg) of (2.6) can now be posed in the following rank-2
signature standard form:

1
1 1 47 /5
(2.9) Qlpo)=| tr ~
o v v
l3 ylo

Now it is clear that the quartic (1.1) can be expressed as

1 ' ' z2
1 1
(2.10) Q(2) = [z2 z 1} by ! ; P
o Y
83 ’)/62 g

Apparently, we factor the quartic as we factor its characteristic matrix Q(yp). This
becomes apparent by introducing the following subpolynomials:

(2.11) p1(2) =224+ 2+ 403
(2.12) p2(z) =72+l

4 P. STROBACH

Now (2.10) appears in condensed form as follows:

213 Qe =beamel| || | = ke

Let zp denote any root of Q(z). Then it is clear that

(2.14) Q(z0) = pi(20) + op3(20) = 0

We can now distinguish two cases, depending on the sign parameter o:

Case 1 (d2 <0: 0= —1): Eq. (2.14) is fulfilled, if either

(2.15) p1(20) = p2(20)
(2.16) p1(20) = —p2(20)

It follows immediately that from (2.16) and using (2.11-12), we can write:
(2.17) q1(20) = p1(20) + p2(20) = 25 + (1 +7)z0 + (3 + 7l2) = 0

In the same fashion, (2.15) yields:

(2.18) ¢2(20) = p1(20) — p2(20) = 25 + (01 — 7)z0 + (3 — 7l2) = 0

Consequently, the roots of Q(z) are given as the roots of the following two quadratics:

(2.19) qi(2) = 22+ (L +)z + (G +762)
(2:20) q2(2) = 22+ (01 — 7)z + (b3 — yl2)
Case 2 (d2 > 0: 0 = +1): Eq. (2.14) is fulfilled, if either
(2.21) p1(z0) = ip2(z0)
or
(2.22) p1(z0) = —ipa(z0)
where 7 is the imaginary unit with property i2 = —1. Again, we can easily see that

(2.16) yields

(2.23) qi(20) = p1(20) +ip2(20) = 25 + (L +iy)z0 + (3 +ivla) =0
and (2.21) results in

(2.24) g2(20) = p1(20) —ip2(20) = 25 + (1 —i7)z0 + (£ —ila) =0

Consequently, in this case, the Q(z) appears factorized in the form

(2.25) Q(z) = q1(2)g2(z)
where
(2.26) q(2) =22+ (1 +iy)z+ (I +iyly)

(2.27) q2(2) = 22+ (01 —iy)z+ (b3 — i yls)

The Low-Rank LDLT Quartic Solver)

But this is just the special form (1.4) with parameters

(2.28) a=(l1+iy)
(2.29) b= (l3+ivls)

according to (1.5-6). Hence it follows immediately that we can compute the desired
complex roots z; and 2z as the roots of g1 (2) or, alternatively, their complex conjugates
as the roots of ga2(2).

Let us continue working with ¢;(z). Using the parameters a and b of (2.28-29),
we can express this quadratic in condensed form as follows:

(2.30) a(z) =22 +az+b

Although this quadratic has complex coefficients, we can solve it in an ordinary fashion
with

a a?
2.31 E— Z
(3) 21 2—|— 1 b
a a?
2.32 Y A X

where the “discriminant” is generally complex here and hence its square-root is the
square-root of a complex number. Finally, we should be aware of possible cancellation
effects in computing differences of almost identical numbers. For these reasons, we
practically select the “large magnitude” solution as follows:

if(|z1] > |z2|)then

Zmazr = ?1

else

Zmax = 22
(2.33) endif

Since z122 = ZmazrZmin = b, we can compute the corresponding “small magnitude”
solution with high relative accuracy via

b
(2.34) Zmin = ,

Zmaav

and the algorithm is complete.

3. Computing the Perfect Antidiagonal Shift. The antidiagonal shift ¢ is
a key parameter in the LDLT algorithm. The final accuracy reached in estimating
the quartic roots depends directly on the relative accuracy reached in estimating this
shift parameter. We present a geometrical intersection method for computing the
o directly as the dominant root of the depressed cubic (2.3). We also discuss other
methods, like eigenvalue based methods which appear reasonable at first glance for
solving a problem of this kind.

3.1. The Cubic and the Geometrical Intersection Method. Let us return
to the depressed cubic of (2.3). In this Section, we replace ¢ by x and Q(y) by y for
convenience. For any = that satisfies y = 0, we can write:

(3.1) B4 gr+h=0

6 P. STROBACH

Multiplying both sides of this equation by 1/xz yields:

h
(3.2) x2+g+5:O ,
or equivalently
h
3.3 Phg=——
(3.3) 2 tg=—
Apparently, the roots of the depressed cubic are the intersection points of a parabola
(34) pla)=a*+g |
and a reciprocal
h
(3.5) r(z) = -

Fig. 3.1 (left) illustrates this interpretation for the case {g = —1, h = —1}. Fig. 3.1
(right) shows the case {g = —2, h = —1}. The following observations can be made:

\ |
\ \

l i

5 -4-3-2-1012 3 435 5 -4-3-2-1012 3 465
X X

y

h A b v r orNvM®wAG
y

h A bk orNvws»

F1c. 3.1. Intersection of a parabola and a reciprocal for the case h < 0. Left: 1 intersection
point. Right: 3 intersection points.

e There are either 1 or 3 intersection points. The case that the curves just
touch in the lower-left quadrant (for h < 0) corresponds to a real double root
of the underlying depressed cubic.

e In any case, one intersection point is always located in the upper-right quad-
rant (for h < 0) or in the upper-left quadrant (for » > 0). This intersection
point constitutes the dominant root of the depressed cubic.

e The case h = 0 has a trivial solution.

e The dominant root is the intersection point of two counteracting curves, i.e.,
in the entire range of interest (for h < 0 the upper-right quadrant), the
intersecting curves have gradients of opposite signs. This is the reason why
the dominant root is always relatively well conditioned. In the quadrant of
interest, these counteracting curves often intersect under an angle of almost 90
degrees. This becomes apparent from the examples shown in Fig. 3.1. In the
second example (right), there are 3 intersection points constituting the 3 real
roots of the underlying depressed cubic. But the two real roots in the opposite
lower-left quadrant are heavily ill-conditioned relative to the dominant root in
this case. The reason is that these subdominant roots are always intersections
of two noncounteracting curves. These curves have gradients of equal signs.

The Low-Rank LDLT Quartic Solver 7

These geometrical facts make it quite attractive to design an algorithm for finding the
dominant root of a depressed cubic directly in the intersection space of the parabola
and the reciprocal. An algorithm of this kind with guaranteed convergence is next
developed.

Begin with a linearization of the reciprocal around a starting point xy. We have:

(3.6) 7(x) = r(zo) +1r'(z0)(x — 3g)
where
(3.7) r'(xg) = x—hQ

0

Hence the linearized reciprocal attains the form

h h
(38) (@) =~ + (e —0)
This linearized reciprocal intersects in two points with the parabola. Consequently,
the conditional equation is a quadratic, namely

h h
(39) $2+g:_x—0+x—(2)($—$0) ,
or equivalently:
(3.10) x22? — ha + (v5g + 2x0h) =0

By choosing an appropriate initial solution ¢ (we discuss this important issue later),
we can always ensure that this linearized reciprocal intersects with the parabola.
Hence the above quadratic will always have two real roots. Since the linearized recip-
rocal is always descending, the minor (small magnitude) root denoted by ,;, will in
any case be our solution of interest here (independent of the sign of h). So the update
is:

(311) o < Tmin

Our algorithm is a kind of a “bi-iteration” and hence there exists a second step which
is required to complete one iteration. This second step consists of a linearization of the
parabola around the just found intersection point. The linearization of the parabola
is given by

(3.12) p(x) = p(wo) +p'(zo)(x — o)
where
(3.13) P (z0) = 20

The linearized parabola intersects with the reciprocal. This can be written as

h
(3.14) B+ g+ 2me—a0) =~

or equivalently

(3.15) 2202° 4+ (9 — x2)x +h =0

8 P. STROBACH

Again, a quadratic is obtained. Selecting the root of interest is not quite as simple as
before. The curves must intersect because they are counteracting. This is a standing
principle that holds for all iterations and guarantees convergence of this algorithm
in all cases. For the case h < 0, these intersections can be found in the upper-right
and lower-left quadrants, respectively. In the case h > 0, the situation appears just
reflected on the vertical axis. Hence we need a case distinction depending on the sign
of h to fix our root of interest. Denoting the two real solutions of (3.15) as &, and
Tinaz, WE can write:

(3.16) xo Max{Tmin, Tmaz} (A <0)
(317) XTo <— min{xmin; xmam} (h > 0) 5

and one iteration of the depressed cubic dominant root finder is already complete.

A closer inspection of the geometry of this problem reveals that one can always
specify an initial solution x¢ from which the algorithm will converge with a hundred
percent probability. For this purpose, we first define a reference point x, on the
reciprocal as the point where the value of the reciprocal just equals the absolute
value of its argument. A case distinction is necessary. The corresponding conditional
equations for x, are:

(3.18) r(z,) =x, = _h (h<0)

(319) r(—xr) =z, =—

with solutions:

(3.20) . =vV—-h (h<0) ,
(3.21) z, =Vh (h>0)

This reference x, is now used to classify the parameter g in three regions with indi-
vidual rules for the starting point xg:

Region 1 (g < —22): x¢ is defined as one of the two intersection points of the
parabola and the horizontal axis. The conditional equation is:

(3.22) g(xo) =23 +9g=0 — zo=+v—g (h<0) ,
and
(3.23) z9=—v—g (h>0)

Region 2 (—2? < g < x,): We choose:

(3.24) xo=x, (h<0) |
(3.25) xg=—x, (h>0)

Region 3 (g > x,): xo is determined so that r(xg) = g. We obtain:

(3.26) @) = =g o wg= =

The Low-Rank LDLT Quartic Solver 9

These initial values of zy ensure that the linearized reciprocal will always intersect
with the parabola and the iteration is successfully started. Each iteration consists of
first computing the linearized reciprocal intersection with the parabola according to
(3.10-11) and in a second step, computing the intersection of the linearized parabola
with the reciprocal according to (3.15-17). Not more than 4 iterations are typically
required for this algorithm to converge. Notice that the method is considerably dif-
ferent from a conventional Newton algorithm working on the cubic directly. Our
algorithm has a hundred percent guaranteed convergence when started from one of
the above defined initial solutions for xy. This is an immediate consequence of the fact
that we are working with counteracting curves whose intersection points are always
unconditionally attracting.

Another aspect is that the underlying expansions in the two steps of our algorithm
are quadratic, not only linear as known from Newton’s iteration. Consequently, we can
expect a substantially accelerated convergence. Indeed, our observation is that the
method requires not more than 4, sometimes even less than 4 iterations to converge.
One of these iterations is typically a very large step, where the algorithm fixes roughly
10 decimal digits in the double precision mantissa, for instance, from an error of le —2
to an error of le — 12 in one step. Hence it makes little sense to characterize the rate
of convergence of this algorithm in powers like quadratic, cubic or higher, because
this would not reflect the typical large step convergence characteristics of this quasi
closed-form algorithm. In effect, our algorithm reduces the problem of solving a cubic
equation to the elementary problem of solving a sequence of quadratic equations.

Convergence is reached if either the difference between the z¢’s obtained from
the two subiterations (3.10-11) and (3.15-17) is perfectly zero or drops to a constant
value near the machine epsilon as a consequence of finite precision arithmetic. The
algorithm terminates on these conditions. Thresholds are not used. Limit cycles near
convergence (as known from algorithms based on linearization) were not observed with
this algorithm. This features a reliable threshold-free termination of the iterations.

The algorithm determines the dominant root zo of the depressed cubic (3.1) or
the desired shift ¢ to high relative accuracy. However, we should be aware that the
coefficients g and h of this cubic are not given quantities. They are computed from
the quartic coefficients according to (2.4-5). Hence the numerical “bottleneck” in the
overall quartic solver is the accuracy of the computed g and h coefficients after (2.4-5).
Let us inspect these equations for the limit case of a quartic with a quadruple root
at z = z,. The general relation between the coefficients of a quartic and its roots is
explicitly given by (recall (1.1-2)):

(3.27) A=—z1— 20— 23— 24 ,

(3.28) B =z1z04 (21 + 22)(23 + 24) + 2324
(3.29) C = —z120(23 + 24) — 2324(21 + 22)
(3.30) D = 21292324

(3.31) A= 4z, ,
(3.32) B=6z] ,
(3.33) C=-42
(3.34) D=z

10 P. STROBACH

We substitute these expressions into (2.4-5). This yields:
164 4 4 _
(3.35) g =162, — 4z, — 122, =0 ,
_ (.4 4 4y0,2 6 6 _
(3.36) h = (82, + 162, — 82,)2z; — 16z, — 16z, = 0

A quadruple root is the limit case of a tight root cluster. Hence the above result
shows what happens if the quartic roots become increasingly clustered with perhaps
a large root mean (i.e. a cluster that appears far from the origin). In such cases, the
coeflicients g and h will attain very small values in magnitude. In the limit case of
a quadruple root, they vanish perfectly. We could demonstrate that the same holds
for triple roots with one widely separated root. In essence, we realize that these tiny
coefficients in the case of clustered roots with large offset or mean are defined as the
differences of large and almost identical numbers. Hence we must be prepared for
a drastic loss of significant mantissa digits if the g and h coefficients are computed
directly from (2.4-5).

3.2. The Dominant Eigenvalue Approach. A second option exists in com-
puting g as the dominant (largest magnitude) eigenvalue of a characteristic matrix.
Recall that the Q(p) of (2.2) can be written as

(3.37) Qlp)=2—¢J ,
where
A B
13 5 0 —3
— A B c . —
(3.38) =4 282 C | J=| 0 1 0
C
2 £ D -0 0

Hence the ¢g can be computed as the dominant real eigenvalue of the following in-
definite generalized symmetric eigenproblem:

(3.39) dv =pJv |,
where v denotes an eigenvector. Premultiplying both sides of (3.39) by J~1 where

0 0 —2
(3.40) J'=10 1 o0 ;
-2 0 0

reveals that this problem can also be posed as a conventional nonsymmetric eigen-
problem of the form

(3.41) Pv =pv
where
-5 —c -2p
(3.42) ®=J'®=| 4 28 C
-2 -4 -2

Both ® and ® define their eigenvalues on the level of the original quartic coefficients.
Hence there are no cancellation problems on the matrix level. The technique is suitable
for an implementation in double precision arithmetic. However, the runtimes can be
long and eigenvalue routines may not always be reliable in the expected extreme cases.

The Low-Rank LDLT Quartic Solver 11

3.3. The Third Option. The question appears if there exists yet a third option
that pairs the reliability and speed of the depressed cubic and the parabola/reciprocal
intersection method with the accuracy of an eigenvalue approach, or even exceeds
this accuracy. This option exists and it arises from the observation that the g and h
coefficients of the depressed cubic (2.3) are perfectly invariant to a linear origin shift
of the given quartic (1.1). To see this, introduce a new variable Z as follows:

(3.43) 2=Z+s ,

where s denotes an arbitrary real shift. Substituting z by Z + s in (1.1) yields the
quartic in the new variable Z:

(3.44) QE)=z'+A2*+Bz*+Cz+D ,

(345) A=4s+ A |

(3.46) B=6s>+3As+B=DB+3s(A+2s) |,

(347) C =145 +34s>+2Bs+C =C+s(2B+s(3A+4s)) ,
(348) D=s'+A4s*+Bs? +Cs+D=D+5s(C+s(B+s(A+3)))

We can see that the overlined coefficients are polynomials of growing degrees in s.
They can be expressed already in their Horner forms which is the numerically prefer-
able form for evaluating these polynomials for a given shift s. Next we introduce
shifted cubic coefficients defined on the coefficients of the shifted quartic as follows:

(3.49) g=A
—2 J—
— — —— 2B \B —2 ——
(3.50) h=<8D+AC——>——02—DA2
A substitution of (3.45-48) into (3.49) yields:

7 = 165" + 16As® + (8B + 342)s> + (4C 4+ 24B)s + AC
—4s' — 4As® — 4Bs* — 4Cs — 4D
—12s* — 124s® — (4B + 3A%)s> — 2ABs — B?/3
= AC — 4D — B*/3
(3.51) =y
In the same fashion one can demonstrate that

(3.52) hi=h

This reveals that the coefficients of the depressed cubic are perfectly invariant to the
shift s. For any arbitrary shift, we always satisfy

(3.53) Yo+ Geo+h=0

This amazing property of the shifted depressed cubic is the key to a fast, reliable
and accurate computation of ¢g. We can tune the shift s in a way so that the

12 P. STROBACH

deteriorating cancellation effects in the computation of the g and h of (3.49-50) are
largely minimized.

It turns out that the best strategy to achieve this is to adjust the s so that B is
absolutely minimized or even perfectly nulled, if possible. In the latter case, we could
completely “switch off” an ill-conditioned term in (3.50) and the formulas for g and
h in this case (B = 0) reduce to

(3.54)
(3.55)

AC - 4D
- O -DA

> wl

The roots of the conditional equation B = 6s% + 3As + B = 0 are formally given by

A 1 8
. =——+-4/A2--B
(3 56) 51,2 4 1 3

The primarily desired B = 0 is reached in all cases where the condition
(3.57) 342 -8B >0

is fulfilled. In these cases, we choose the minor root s, of the real pair s 5 as shift:

—2B
3A + sign{A}V9A2 —24B '

In the special case of a real double root, the shift is simply given by

(342 -8B > 0)

(3.59) s=-7 (342 -8B =0)
We realize that this is a special case known from classical closed form quartic solvers
as a “depression”. Indeed, this special case of a shift groups the roots of the shifted or
“depressed” quartic around the origin so that the mean of the shifted roots vanishes
perfectly. So in any case where 342 — 8B = 0, we do not only reach B = 0, but
simultaneously also satisfy A = 4s + A = 0 according to (3.45).

Finally, it remains to consider the case of a complex conjugate root pair s; 3. We
are not interested in complex shifts here. Hence in this case, we also set

(3.60) s=-7 (342 -8B < 0)
and hereby fix the shift to the real part of the complex conjugate pair s; 2. What is
the effect of this choice on the B? To see this, consider
0B

3.61 — =125+ 34
(3.61) s s+
Apparently, a shift s = —A/4 determines the B so that 0B/ds = 0. An extremal
point of the function B(s) is reached. This extremal point can only be an absolute
minimum and is unique, because B(s) is either a pot or an upside-down pot and does
not cross the horizontal axis. - _ _

Our shift strategy either pins B to zero or pins A to zero or both. If A is

pinned to zero then B must attain an absolute minimum. The effect of this “B-
shifting” is that in the overlined domain, we “switch oftf” or largely attenuate a large

The Low-Rank LDLT Quartic Solver 13

term in the h-formula and overall subtract “less equal” numbers in the overlined
domain than in the original domain because we remove much of the mean that exists
in the problem by shifting. However, a general elimination of the root-mean by a
conventional “depression” shift A = 0 is not a clever choice here because the A does
not appear as a “switch” in our formula for the critical A and therefore, an A = 0 is
much less valuable for our purposes than a B = 0. For a B = min, we get the A =0
anyway as a by-product “for free”. Finally, notice that the Horner forms of (3.46-48)
play an important role in this concept because they allow us to compute the overlined
B, C' and D coefficients with high relative accuracy.

Let us conclude this Section by looking at the B-shift in the case of a perfect
quadruple root. From (3.31-32), we know that in this case, we have A = —4z, and
B = 623. We can immediately verify that in this case, we obtain 342 — 8B = 0 which
is just the special case (3.59). Hence B-shifting results in both B = 0 and A = 0.
This is a case of depression and the quadruple root is moved into the origin of the
overlined domain. Consequently, we also have C' = 0 and D = 0. This in turn forces
the overlined g and h coefficients to zero and the result is a perfect 9 = 0. A double
precision routine for computing the g along this B-shifting concept will produce this
o = 0 exactly in this case and the same holds for triple roots. Hence arbitrarily higher
precision arithmetic would not result in any improvement here anymore. The errors
that still may occur result from the rest of the algorithm which is very accurately
implemented, as we shall see in the next Section. Hence even perfect results do not
come as a surprise as soon as one knows how this algorithm works. Outstanding or
even perfect results can be expected in all cases of triple and quadruple roots. These
cases are a simple exercise for the low-rank LDLT quartic solver while they appear
as the most demanding cases for many other algorithms. It comes without saying
that in applications where only triple or quadruple roots can occur, we can fix the ¢q
directly to zero without computing it explicitly.

4. Fitting the LDL” Parameters. Once the g is known, we can fit the
LDLT model of (2.6) onto the characteristic matrix of (2.2). This can be expressed
in a layerwise fashion as follows:

1 2 (£ +2) 1 b 4 00 0

% (% - 900) % = 81 f% 6163 + do 0 1 fg

(L + 20) ¢ D 0 005 2 0 £ 13
(4.1)

The first layer is completely determined by

(4.2) 0 =

(4.3) 03 =

|

%o
2

o o i~

The second layer reduces to a 2 x 2 symmetric fitting problem because in the ideal
case (without considering roundoff error), we satisfy

2B _ ¢ 2 0 1 ¢
(4.4) (F—w) T | 4 bt 2
g D 0l 12 lty 02

14 P. STROBACH
or equivalently (by elimination of)

(45) (B-23—41) (§-6b) | _ |1 b
(£ — t143) (D —13) ly (3

This constitutes a set of relations for the ds and £ parameters. A naive solution is:
(4.6) dy =B —2l3— 03 |

(4.7) f= (% —Ms) Jdy

This choice leaves the bottom-right relation in (4.5), namely
(4.8) D — 02 =dyt3

completely unattended. This equation holds only if ideal infinite precision arithmetic
is assumed. In finite precision arithmetic, this equation will no longer hold and in
cases of nearly triple or quadruple root like clusters, we can expect to be faced with
extreme errors €e = D — E% — dgﬁ%, if d2 and ¢2 are computed according to (4.6-7).

To cope with this difficulty, we must exploit the fact that the problem is overde-
termined. Two parameters do and /o are determined by 3 equations. There exists
a degree of freedom that can be used for making the implementation more resistant
against cancellation errors in forming differences of almost identical numbers. For
this purpose, we rewrite (4.5) in vector form as follows:

B — 2@3 — 6% 1/62
(4.9) C — ity = dols 1
D — /3 2

We can introduce an intermediate quantity
(4.10) 02 = 2doly = C — Als

to see that there are now two options left for calculating ¢5 either from the top row
of (4.6) according to

5
4.11 =2
(4.11) 2 T 2(B-23—103)

or from the bottom row of (4.6) according to

(4.12) 02 = 2D~ 15)
2

In infinite precision arithmetic, we have Egl) = Egz). In finite precision arithmetic,
these two forms of /5 may assume significantly different values as a consequence of
cancellation errors in computing the terms C' — Af3 of (4.10), B — 203 — ¢3 in (4.11)
and D — ¢% in (4.12).

There exists no way to bypass the cancellation error in the computation of the
do = C — Als according to (4.10) because this quantity is used in both forms of ¢
according to (4.11-12). However, it makes sense to study the cancellation errors of

The Low-Rank LDLT Quartic Solver 15

the terms B — 203 — 2 in (4.11) and D — £ in (4.12). These cancellation errors are
most severe in the case of clustered roots. Hence we evaluate these expressions in the
limit case of a quadruple root at z = z; and obtain (using (3.31-34) and ¢ = 0 from
(3.35-36)):

(4.13) B—203— =427 -4z} =0 ,
(4.14) D—103=z;—2;=0

q

We observe that the cancellation errors in (4.14) appear as differences of z;l while the
cancellation errors in (4.13) appear only as differences of zg. Cancellation errors in
differences of zé‘ are much more severe than cancellation errors in differences of z(?
Hence the top requirement here is to minimize these higher powers of z, cancellation
€rTors.

This is achieved if we choose {5 = €gl) in cases where D > 0 and choose {5 = €g2)
otherwise. Exceptions of B—2f3—/¢3 = 0 in (4.11) or d3 = 0 in (4.12) must be handled

by setting ¢» = 0. Finally, we compute the dy via

2
4.15 dy = —
() 2 262 ’

provided £z # 0. Otherwise, we set do = 2B/3 — ¢o — 3 to satisfy (4.1). A case with
¢ = 0 and dy = 0 occurs in the presence of an ideal quadruple root, where Q (o = 0)
drops to a rank of one.

4.1. Handling Bi-Quadratic Equations. An exceptional case is the so-called
bi-quadratic equation

(4.16) Q(z)=z*+B2+D

The bi-quadratic equation is just a restricted quartic with coefficients A = 0 and
C = 0. A bi-quadratic equation is easily solved as a quadratic equation followed
by a square-rooting of the roots. In our general quartic solver, we must handle the
bi-quadratic equation as an exception because the Jo vanishes perfectly in this case
(recall (4.10)) as a consequence of the vanishing coefficients A and C. A remedy exists
in computing ds using (4.6), where we omit the ¢; because this term vanishes as well
as a consequence of the vanishing A. Consequently, if both A = 0 and C' = 0 are
detected, we compute

(4.17) dy=B 25

and leave the /5 fixed to zero because this quantity vanishes in the bi-quadratic case,
as we can easily verify from (4.7).

5. Solving the Quadratics. A final issue is the computation of the roots of
the quartic as the roots of the two quadratic factors. In Case 2 (¢ = +1) this is
completely handled already in (2.28-34). In Case I (¢ = —1), however, we must
compute the roots of the two quadratic factors

(5.1) u(z)=2>+az+b |,
@(2)=22+cz+d

16 P. STROBACH

where (recall (2.19-20)):

(5.3) a=10+~v |,
(5.4) c=0l—v
(5.5) b=10ls+~ls |
(5.6) d=1l3—~ly

These coefficients of the quadratics (5.1-2) cannot be computed “just like that” be-
cause there exists an obvious risk of running into unacceptable cancellation errors.
For instance, if ¢; and v are equally signed, then a is accurate while ¢ will suffer
from a cancellation of mantissa digits by subtraction and is hence the less “trustwor-
thy” quantity. The same situation occurs for the coefficients b and d. In essence,
two of these coefficients are “trustworthy” while the other two’s must be replaced by
some computation via a different path circumventing the subtraction of equally signed
numbers.

This alternative path can be constructed via a back-connection of the quadratic
coefficients with the original quartic coefficients by convolution. We can write:

A—a

1
B-b a 1 c
(5.7) c |7 |boa [d]
D b

From the last row in (5.7), we can immediately see that
(5.8) D =bd

This is the required second path for circumventing cancellation errors in the computa-
tion of the coefficient pair b and d. We compare the magnitudes of b and d. The larger
magnitude quantity is always the trustworthy quantity. The smaller magnitude quan-
tity is computed via the second path (5.8). This yields the following post-processing
scheme for the coefficients b and d:

(5.9) d=— (ld <o) ,

(5.10) b= otherwise

Now as we fixed the b and d coefficients, we find that essentially the same situation
exists in case of the a and ¢ coefficient pair. Again, we exploit the fact that these
coeflicients are linked via the original quartic coefficients. Excluding the bottom row
of (5.7), we can write:

A a-+c
(5.11) B |=|bt+ac+d
C bec + ad

In the event that |a| > |c|, we can solve this system for ¢

A—a 1
(5.12) B-b—-d|=|a|c = ¢ ,
C —ad b

The Low-Rank LDLT Quartic Solver 17

which is now easily recognized as an overdetermined system of 3 linear equations for
the parameter ¢. We solve in a standard fashion in the least-squares sense for the
desired parameter c.

On the other hand, if a is the smaller magnitude and hence the “untrustworthy”
quantity, we can compute this quantity alternatively as the solution of the following
fitting problem in a standard least-squares sense:

A—c 1
(5.13) B-b—d |=]|c|a — a
C —bc d

Besides these links for the “cross-quadratic” {b,d} and {a,c} coefficient pairs, there
exists a second link between the “auto-quadratic” pairs {a, b} and {c, d} and the given
quartic coefficients. To see this, notice that the top and bottom rows of (5.7) can be
used to express the {¢,d} pair in terms of the {a,b} pair as follows:

(5.14) c=A-a
(5.15) d=D/b

)

Substituting these expressions into the two center rows of (5.7) yields:

(5.16) (B—bb=ab(A—a)+D
(5.17) bC' = b*(A—a)+aD

An error vector is established:

e= [(B_b)b—kab(a_A)_D}

(5.18) bC 4 b2(a — A) — aD

A Jacobian is established:

(519) F=[2 %}:[(2%—@4) (B—2b+a2—aA)]

(2= D) (C+ 2ba— 2bA)

Updates for the parameters a and b are computed via solving the following 2 x 2
system of linear equations:

(5.20) F[iz] =—e — Aa, Ab
and the pair {a, b} is eventually updated via

(5.21) a<+ a+ Aa
(5.22) b+ b+ Ab

3

These updates will not necessarily improve the result. Therefore, after each update,
a test is performed whether or not the updated coefficients reduce the absolute coef-
ficient error

(5.23) E = |ey| + |ea]|

where e = [e1, e5]” and e is the error vector of (5.18). In most of these cases, this test
fails and we restore the “old” coefficients prior to updating meaning that the routine

18 P. STROBACH

is practically inactive. However, in cases in which this test is passed, the coefficient
refinement can be significant. Several iterations of this kind are eventually performed
until either the overall absolute coefficient error E of (5.23) is perfectly nulled or the E
of the actual update is greater than the E of the previous update. Then the routine
is stopped and the previous parameters are restored. Hence this routine operates
like a final “watchdog” that observes whether or not a final improvement is possible
by linking the quadratic constituted by the {a, b} coefficient pair directly with the
coefficients of the quartic in a final backward correction step. The same principle is
applied prior to solving the quadratic constituted by the {c, d} pair.

6. Experimental Verification. Results of computer simulations are shown
here for the proposed low-rank LDLT quartic solver and two reference methods,
namely: (1) The Companion matrix eigenvalue method using Lapack subroutine
dgeev.f [9] working on a quartic coefficient Companion matrix of dimension 4 x 4
and (2): The POLZEROS root-finder of [10] (a Fortran subroutine of the method can
be found under [11]).

Single trial runs are not sufficiently informative regarding the robustness and
performance of a root finder. Therefore we also show results of random tests with
many trial runs of statistically independent realizations of quartics with special prop-
erties, for instance quartics with large root spread or quartics with tightly clustered
roots with large offset. The random component in all these tests is generated using
the random_number generator in Fortran. Repeated calls on this function generate
sequences {py} of random numbers uniformly distributed in the interval [0 : 1].

6.1. Tests Using Random Coefficient Quartics. A standard but largely un-
critical test for polynomial root-finder algorithms are random coefficient polynomials.
We begin with a test of this kind for orientation purposes. The quartic coefficient A
is a random number generated according to

(6.1) A=2(pr —05) ,

where k is the realization index. The B, C and D coefficients are constructed in the
same fashion. The test comprises 25000 statistically independent realizations or trial
runs using the algorithms under comparison for identifying the roots of these random
quartics. As a reference, we use “true” or “ideal” roots from a root-finder operating
in an extended precision environment.

The criterion monitored in each trial run is the absolute root error defined as

(6.2) e(k) = |z(k) — 2(K)|; k=1,2,3,...,10° |

where z(k) is a true root and Z(k) is the corresponding estimated root. Each of the
25000 trials in a random test generates 4 root errors. Consequently we generate, in
each experiment, an error sequence consisting of 10° absolute root error samples.

The {e(k)} sequence is a strictly positive random process and is hence character-
ized by a probability density function (PDF) p(e). The probability that an absolute
root error sample occurs in the range [0 < e < o0] is exactly 1 and is formally given
as follows:

(6.3) P(0:00) = /: p(e)de =1

Our criterion is directly related to this elementary statistical fact and is given by the

https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==

The Low-Rank LDLT Quartic Solver 19

probability that an absolute root error sample exceeds a reference error e;.y:

o0

(6.4) P(e > eref) = P(eref : 00) = / ple)de <1

e=€ref

In estimation theory, this criterion is often named a receiver operating characteristics
(ROC) [12]. The ROC is the most instructive and informative criterion for evaluating
the performance of an estimator. A root-finder is an estimator. Hence the ROC is
the right criterion for performance evaluation here.

Fig. 6.1 shows the mean absolute root error sequences in this experiment for the
Companion-eigenvalue quartic solver using Lapack dgeev.f (Top image in Fig. 6.1),
the POLZEROS root finder (Center image in Fig. 6.1), and finally the low-rank LDLT
quartic solver (Bottom image in Fig. 6.1). Fig. 6.2 shows the statistical evaluation of
these errors in terms of the ROC-curves. We find that POLZEROS performs slightly
better than LDLT. Both LDLT and POLZEROS perform by approximately one order
of magnitude or one decimal digit better than DGEEV.

6.2. Tests Using Random Quartics with Tight Root Clusters. A much
more critical test series is now shown using quartics with tight root clusters and large
root means or offsets. Cases of multiple roots can be handled as well (See Section 6.5
for examples). Special algorithms exist for handling multiple roots [13].

6.2.1. Clustered Real Roots. The root model used in this experiment is given
as follows:

(6.5) 2i(k) = 1000+ pi g, i=1,2,3,4, k=1,2,3,...,25000 ,

where p; . denotes the random component of root i uniformly distributed in the
range [0 : 1] as usual. Fig. 6.3 shows the resulting root errors already evaluated in
terms of their ROC curves obtained for the 3 algorithms under test. It can be seen
that POLZEROS and DGEEV show a similar characteristics. LDLT performs clearly
better.

6.2.2. Clustered Complex Conjugate Root Pairs. The root model used in
this experiment is given by

(6.6) z1(k) = 600 + (p1x — 0.5) +i(p2r — 0.5)
(6.7) 27 (k) =600 + (p1,5 — 0.5) —i(p2,x — 0.5) ,
(6.8) 22(k) = 600 + (p3,5 — 0.5) +i(pay — 0.5)
(6.9) 25 (k) = 600 + (p3 x — 0.5) — i(par — 0.5)

Fig. 6.4 shows the ROC-curves for this case. Again, LDLT comes up with the top
performance. POLZEROS approaches its breakdown region.

6.3. Random Quartics with Large Root Spread. In this experiment, the
root model is given as follows:

(6.10) z21(k)=1+01p1
(6.11) zo(k) = 10° +10%p9 1
(6.12) z3(k) =106 +10°p3 1
(6.13) (k)

z4(k) = 10° + 10%py

https://www.researchgate.net/publication/220576587_Computing_multiple_roots_of_inexact_polynomials?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==

20 P. STROBACH

le-012 T T T T

1le-013 Comp-DGEEV

le-014

le-015

le-016

absolute root error

le-017

le-018

" .

20000 40000 60000 80000 100000
root number

le-012 T T T T

le-013 POLZEROS

absolute root error

meMMWMMWMWWJMMMMWWMMMMMWMﬂMMwMMMMMmeWWWWMMM
0 20000 40000 60000 80000 100000
root number

le-012 T T T T

1le-013 Low-Rank LDLT
le-014
1le-015

le-016

absolute root error

le-017

1&m3!WW\VWMWMMMMMHMMMHWMMEMNWMMMWWWW

F1c. 6.1. Absolute root error sequences for the random coefficient scenario in 25000 statis-
tically independent trial runs. Top: Companion-eigenvalue method using Lapack dgeev.f. Center:
POLZEROS. Bottom: Low-rank LDLT quartic solver.

We are interested in monitoring the estimation errors of the minor root z1 (k). Hence
only the sequence of absolute root errors of z1(k) is recorded and evaluated here.
This test comprises 10° trial runs because only the minor root error statistics is
monitored. Fig. 6.5 shows the corresponding ROC-curves of the minor root estimation
errors. LDLT and POLZEROS come up as the top performers and POLZEROS

The Low-Rank LDLT Quartic Solver 21

0.8

0.6
DGEEV

P(e> eref)

0.4

POLZEROS

0 N Lol N ool N 1l
1e-018 1le-017 1le-016 1le-015

Cref

FIG. 6.2. Probability of exceeding error P(e > eyoy) or ROC-curves for the 8 error tracks shown
i Fig. 6.1.

0.8
POLZEROS
0.6

P(e > ey

04

0 s MR | s M A s MR A s M
0.0001 0.001 0.01 0.1 1

Fi1a. 6.3. ROC curves for the clustered real roots scenario with 25000 statistically independent
trial runs.

performs slightly better than LDLT. DGEEV produces a poor result, with a loss of
approximately 3 decimal digits on average compared to LDLT and POLZEROS. The
reason is the known relative inaccuracy of the QR algorithm in estimating tiny roots.

6.4. Runtimes. Another aspect of interest are the runtimes of the algorithms
under test. We measured the runtimes in seconds for 10° trial runs in each scenario
using the CPU_time command in Fortran. The results are displayed in Table 6.1.
We can see from Table 6.1 that the runtimes of DGEEV and POLZREOS are clearly
scenario dependent. In demanding scenarios the runtime of these algorithms can grow
by a factor of 3 approximately compared to the runtimes in less demanding scenarios.
This is a typical characteristics of iterative algorithms. On the other hand, we observe

22 P. STROBACH

0.6 | -

P(e> eref)

04 -

1e-006 1le-005

0.0001 0.001 0.01 0.1 1

Cref

Fic. 6.4. ROC curves for the clustered complex conjugate roots scenario with 25000 statistically
independent trial runs.

0.8

0.6

0.4

P(e> eref)

POLZEROS
0.2

1e-018 1le-017 1e-016 1le-015 1le-014 1e-013 le-012

0 s |

Cref

F1G. 6.5. ROC curves for the large spread scenario with 10° statistically independent trial runs.

that in the case of the LDLT algorithm, the runtimes show much less variations and
appear clearly not increased by demanding scenarios. Overall, LDLT runs much faster
than the general purpose root finders. Variations of the measured runtimes in Table
6.1 are within the statistical fluctuations of the CPU_time counter under Fortran.

6.5. Some Extreme Benchmark Tests. We shall conclude this experimental
Section by showing the results of some extreme benchmark tests. These are single
trial runs.

6.5.1. The Quadruple Root Test. An obligatory test is a run with a quadru-
ple root quartic. We try one with a quadruple root at z;, = 1000. The following
results are obtained:

The Low-Rank LDLT Quartic Solver 23

| Scenario DGEEV POLZEROS LDLT |
random coefficients 4.695 sec 3.198 sec 0.6552 sec
clustered real roots 12.32 sec 8.065 sec 0.6240 sec

clustered complex roots 11.63 sec 8.065 sec 0.5928 sec
roots with large spread 3.556 sec 2.542 sec 0.5616 sec
TABLE 6.1

Runtimes for 108 trial runs of the algorithms under test in different scenarios on a ThinkPad
W520 (Intel Core i7).

————— Companion Matrix using Lapack dgeev.f —--————-
(999.858663364066,0.141346485753255)
(999.858663364066,-0.141346485753255)
(1000.14133663593,0.141326782073270)
(1000.14133663593,-0.141326782073270)

—————————————————— POLZERQS ------=—-=====—=-=——=—-
(999.780644510321,6.335405367989611E-002)
(999.949692471958,-0. 180687936306398)
(1000.08129851090,0.303118746700735)
(1000.24987721631,-6.321370229524327E-002)

—————————— Low-Rank LDLT Quartic Solver --———————-
(1000.00000000000,1.525878906250000E-005)
(1000.00000000000,-1.525878906250000E-005)
(1000.00000000000,0.000000000000000E+000)
(1000.00000000000,0.000000000000000E+000)

Both DGEEV and POLZEROS loose about 3/4 of the mantissa digits. Additionally,
both methods produce relatively large erronous imaginary parts in the root estimates.
LDLT performs uncomparably better with perfect estimates of the real parts of all
roots. One root-pair has a spurious imaginary component in the range 10~°.

6.5.2. The Triple Root Test. This test shows the results produced by the
algorithms when applied to a quartic with a triple root at z; = 1000 and a minor root
at zg = 10715.

————— Companion Matrix using Lapack dgeev.f —--————-
(0.000000000000000E+000,0.000000000000000E+000)
(999.989897079782,0.000000000000000E+000)
(1000.00505146011,8.749420650332386E-003)
(1000.00505146011,-8.749420650332386E-003)

—————————————————— POLZERQS —-------=======-=——=—=
(1.000000000000000E-015,9.860761315262648E-032)
(999.994747309788,-7.725111102950707E-003)
(999.993130649025,1.488742047131307E-002)
(1000.01227900630, -1 .030412143522037E-003)

24 P. STROBACH

—————————— Low-Rank LDLT Quartic Solver --————————-
(1000.00000000000,0.000000000000000E+000)
(1.000000000000000E-015,0.000000000000000E+000)
(1000.00000000000,0.000000000000000E+000)
(1000.00000000000,0.000000000000000E+000)

We can see that DGEEV crunches the tiny root completely away and replaces it by
a plain zero. This shows again the known weakness of the practical QR algorithm in
representing tiny roots with a sufficient relative accuracy. POLZEROS estimates the
tiny root accurately, but looses more than half of the mantissa digits in estimating
the dominant triple root. LDLT produces a perfect result without any error.

6.5.3. The Kahan Benchmark Test. In a recent note [14], W. Kahan pro-
posed the following extreme spread test for quartic root finder algorithms. For a given
large number S, with S > 10'3, compute the roots of a quartic with coefficients

(6.14) A=—(1+1/9) ,
(6.15) B=1/S-5% |
(6.16) C=8*+58 |,
(6.17) D=-8

The ideal roots are [—S, 1/S, 1, S]. We ran this test with our 3 algorithms for a
parameter S fixed to S = 10'°. The following results were obtained:

————— Companion Matrix using Lapack dgeev.f —-———--
(9.992007221626409E-016,0.000000000000000E+000)
(0.999999999999997,0.000000000000000E+000)
(-1.000000000000000E+015,0.000000000000000E+000)
(1.000000000000000E+015,0.000000000000000E+000)

—————————————————— POLZEROS -----————————————————-
(9.999999999999999E-016,0.000000000000000E+000)
(1.00000000000000,1.110223024625157E-016)
(1.000000000000000E+015,-3.552713678800501E-015)
(-1.000000000000000E+015,-8.940696716308594E-008)

—————————— Low-Rank LDLT Quartic Solver —---—-------
(1.000000000000000E+015,0.000000000000000E+000)
(-1.000000000000000E+015,0.000000000000000E+000)
(1.00000000000000,0.000000000000000E+000)
(1.000000000000000E-015,0.000000000000000E+000)

DGEEV produces a robust result, as expected, but the estimated tiny root has only
3 accurate mantissa digits. POLZEROS estimates the real parts of the roots almost
perfectly, but produces unacceptably high spurious imaginary parts. LDLT produces
a perfect result without any error.

6.5.4. Another Extreme Spread Test. Suppose we wish to estimate a tiny
complex conjugate root pair at 2,3 = 1.0 £40.1 in presence of a dominant complex
conjugate root pair at z3/4 = 10" 44107, The following results are obtained:

The Low-Rank LDLT Quartic Solver 25

————— Companion Matrix using Lapack dgeev.f —-———--
(0.999999999999791,0.100000000001888)
(0.999999999999791,-0.100000000001888)
(100000000000000. ,10128506.0441057)
(100000000000000. ,-10128506.0441057)

—————————————————— POLZERQS —-------=======-=-—=—=
(1.00000000000000, 9 . 999999999999944E-002)
(1.00000000000000, -0 100000000000000)
(100000000005990. , 10100962 . 2680463)
(100000000209590. ,-9799427 . 72154323)

——————————— Low-Rank LDLT Quartic Solver —---—-----—-
(1.00000000000000,0.100000000000000)
(1.00000000000000,-0.100000000000000)
(100000000000000.,10057587.6707783)
(100000000000000. ,-10057587.6707783)

We can see that DGEEV looses mantissa digits in both the real and the imaginary
parts of the tiny root pair. Additionally, there is a heavy loss of mantissa digits in
the imaginary part of the dominant root pair. POLZEROS produces a clearly better
result in estimating the tiny root pair but looses heavily in estimating the dominant
root pair. Moreover, we observe that POLZEROS in the form in which it is available,
does not force the estimates to exactly complex conjugate pairs as it should be in
the case of real coefficients. LDLT produces a perfect estimate of the tiny root pair
and shows as well a loss of digits in the imaginary part of the dominant root pair.
However, this loss is not quite as drastic as observed with the two standard methods.

6.5.5. A Case of Clustered Roots. Finally, we look at an experiment using a
quartic with graded clustered real roots. These roots assume the locations z; = 30000,
2o = 30001, z3 = 30010, and z4 = 30100. The following results are obtained:

————— Companion Matrix using Lapack dgeev.f —--———-
(30000.3013835296,1.81298256560417)
(30000.3013835296,-1.81298256560417)
(30010.4011967873,0.000000000000000E+000)
(30099.9960361535,0.000000000000000E+000)

—————————————————— POLZERQS —-------=======-==—=—=
(29999.2106586734,0.824164617586320)
(30001.1693954703,-0.443021702819903)
(30009.4508102282,0. 357452469824679)
(30100.0003705718,9 . 354120767204877E-007)

—————————— Low-Rank LDLT Quartic Solver —---—-------
(30001.2913551137,0.000000000000000E+000)
(29999.7485371820,0.000000000000000E+000)
(30100.0004673796,0.000000000000000E+000)
(30009.9478702746,0.000000000000000E+000)

26 P. STROBACH

We can see that DGEEV shows a severe malfunction: The two tightly clustered roots
at z; = 30000 and z9 = 30001 appear merged to a complex conjugate root pair. The
other two less tightly clustered roots are estimated with 5 mantissa digits accuracy.
POLZEROS shows again the property that it estimates the real parts of the roots quite
accurately, at least up to 5 mantissa digits accuracy, but produces again unacceptably
large spurious imaginary parts in the root estimates. LDLT produces the overall best
result.

6.5.6. A Seemingly Simple Case. Concluding this Section, we show the re-
sults obtained for an intuitively uncritical case with two complex conjugate root pairs
located at 21/, =4 - 10% +i3-102% and 23/4= 3" 10* 4+ 47 - 10%. We obtain:

————— Companion Matrix using Lapack dgeev.f —-———--
(30000.0000000000,7000.00000000027)
(30000.0000000000,-7000.00000000027)
(400000.000000000,300.000000207490)
(400000.000000000,-300.000000207490)

—————————————————— POLZEROS -----———-—————————————
(30000.0000000000,7000.00000000001)
(30000.0000000000,-7000.00000000000)
(399999.999999569,300.000000273273)
(400000.000000000,-299.999999974002)

—————————— Low-Rank LDLT Quartic Solver --————————-
(30000.0000000000,7000.00000000001)
(30000.0000000000,-7000.00000000001)
(400000.000000000,300.000000000000)
(400000.000000000,-300.000000000000)

Both DGEEV and POLZEROS show an amazing loss of 6 mantissa digits in the
estimates of the smaller imaginary parts. LDLT is not puzzled by this case and
produces the expected almost perfect estimates.

7. Conclusions. The low-rank LDL”T quartic solver is the ultimate linear al-
gebra answer to the quartic factorization problem. It arises from the sudden insight
that the coefficient vectors [1,a,b]” and [1,c,d]” of the quadratic factors of a quartic
must span a 2-dimensional subspace of a 3-dimensional space in the regular case, or
even only a 1-dimensional subspace of that 3-dimensional space in exceptional cases
like quadruple roots. Consequently, it is clear that all the information that exists
in a quartic must be representable in a matrix of dimension 3 x 3, not in a matrix
of dimension 4 x 4, as known from Companion matrix methods. These methods are
therefore inherently suboptimal, because they operate in a space of unnecessarily large
dimension. Starting out from these insights, we only had to demonstrate how we could
bring the concept to work in a practical algorithm. This is shown in Section 2 but the
plain theory would not result in an algorithm of high quality if just we program these
equations down in the “raw” fashion in which they appear from the algorithm devel-
opment. There are too many cases of potential cancellation of significant mantissa
digits by subtraction of equally signed numbers. Fortunately, the LDL” concept is
sufficiently compact and free of transcendental operations. This has opened us many

The Low-Rank LDLT Quartic Solver 27

doors for bypassing these critical subtractions of equally signed numbers. The result
is a reliable, fast and accurate quartic solver with scenario-independent runtimes. Our
Fortran subroutine implementation of the method is released together with the paper.

REFERENCES

[1] N.H. Abel, “Beweis der Unmdglichkeit, algebraische Gleichungen von hoheren Graden als dem
Vierten allgemein aufzulosen.” J. reine angew. Math. 1, 65, 1826. Reprinted in Abel, N.
H. (Ed. L. Sylow and S. Lie). Christiania [Oslo], Norway, 1881. Reprinted in New York:
Johnson Reprint Corp., pp. 66-87, 1988.

[2] D. Herbison-Evans, “Solving quartics and cubics for graphics”, Technical Report TR94-487,
Basser Dept. Computer Science, Univ. of Sydney, 2004.

[3] J. D. Foley, A. Van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics: Principles and
Practice, Addison-Wesley, 1995.

[4] G.B. Hughes and M. Chraibi, “Calculating ellipse overlap areas”, Comput. Visual Sci., Vol. 15,
pp. 291-301, Jan. 2014.

[5] M. Abramowitz, and I.A. Stegun (Eds.), “Solutions of quartic equations.” §3.8.3 in Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing,
New York: Dover, pp. 17-18, 1972.

[6] P. Borwein and T. Erdelyi, “Quartic Equations.” §1.1.E.le in Polynomials and Polynomial
Inequalities, New York: Springer-Verlag, p. 4, 1995.

[7] P. Strobach, “The fast quartic solver”, Journal of Computational and Applied Mathematics,
Vol. 234, pp. 3007-3024, 2010.

[8] W.H. Press: Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, second
ed., Cambridge University Press, Cambridge, MA, 1992.

[9] E. Anderson, et al.,, LAPACK User’s Guide, third ed., STAM Customer Service, Pittsburgh,
PA, 1999.

[10] D.A. Bini, “Numerical computation of polynomial zeros by means of Aberth’s method”, Nu-
merical Algorithms, Vol. 13, pp. 179-200, 1996.

[11] D.A. Bini and G. Fiorentino, “MPSolve homepage”, http://www.dm.unipi.it/cluster-
pages/mpsolve/index.htm.

[12] H. L. VanTrees, Detection, Estimation, and Modulation Theory: Part 1, John Wiley & Sons,
New York, 2001.

[13] Z. Zeng, “Computing multiple roots of inexact polynomials”, Mathematics of Computation,
Vol. 74, pp. 869-903, 2005.

[14] W. Kahan, “How (not) to solve a real quartic”, Lecture Note Scientific and Engineering Com-
putation Seminar, www.eecs.berkeley.edu/ wkahan/Math128/5Mar14.pdf, Berkeley, CA,
March 2014.

https://www.researchgate.net/publication/243106540_Beweis_der_Unmoglichkeit_Algebraische_Gleichungen_von_Hoheren_Graden_als_Dem_Vierten_Allgemein_Aufzulosen?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/243106540_Beweis_der_Unmoglichkeit_Algebraische_Gleichungen_von_Hoheren_Graden_als_Dem_Vierten_Allgemein_Aufzulosen?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/243106540_Beweis_der_Unmoglichkeit_Algebraische_Gleichungen_von_Hoheren_Graden_als_Dem_Vierten_Allgemein_Aufzulosen?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/243106540_Beweis_der_Unmoglichkeit_Algebraische_Gleichungen_von_Hoheren_Graden_als_Dem_Vierten_Allgemein_Aufzulosen?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/285056550_Solving_Quartics_and_Cubics_for_Graphics?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/285056550_Solving_Quartics_and_Cubics_for_Graphics?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/51912257_Calculating_Ellipse_Overlap_Areas?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/51912257_Calculating_Ellipse_Overlap_Areas?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/220389858_The_fast_quartic_solver?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/220389858_The_fast_quartic_solver?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/220576587_Computing_multiple_roots_of_inexact_polynomials?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==
https://www.researchgate.net/publication/220576587_Computing_multiple_roots_of_inexact_polynomials?el=1_x_8&enrichId=rgreq-833a7d548be1ec85e83f352cb2ff7939-XXX&enrichSource=Y292ZXJQYWdlOzI3MTE5NjI3MTtBUzoxODgxNDA2NjkxMjA1MTRAMTQyMTg2NzYzOTI2Ng==

